12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993 |
- /*
- * Elliptic curves over GF(p): generic functions
- *
- * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * This file is part of mbed TLS (https://tls.mbed.org)
- */
- /*
- * References:
- *
- * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
- * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
- * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
- * RFC 4492 for the related TLS structures and constants
- * RFC 7748 for the Curve448 and Curve25519 curve definitions
- *
- * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
- *
- * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
- * for elliptic curve cryptosystems. In : Cryptographic Hardware and
- * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
- * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
- *
- * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
- * render ECC resistant against Side Channel Attacks. IACR Cryptology
- * ePrint Archive, 2004, vol. 2004, p. 342.
- * <http://eprint.iacr.org/2004/342.pdf>
- */
- #if !defined(MBEDTLS_CONFIG_FILE)
- #include "mbedtls/config.h"
- #else
- #include MBEDTLS_CONFIG_FILE
- #endif
- /**
- * \brief Function level alternative implementation.
- *
- * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
- * replace certain functions in this module. The alternative implementations are
- * typically hardware accelerators and need to activate the hardware before the
- * computation starts and deactivate it after it finishes. The
- * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
- * this purpose.
- *
- * To preserve the correct functionality the following conditions must hold:
- *
- * - The alternative implementation must be activated by
- * mbedtls_internal_ecp_init() before any of the replaceable functions is
- * called.
- * - mbedtls_internal_ecp_free() must \b only be called when the alternative
- * implementation is activated.
- * - mbedtls_internal_ecp_init() must \b not be called when the alternative
- * implementation is activated.
- * - Public functions must not return while the alternative implementation is
- * activated.
- * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
- * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
- * \endcode ensures that the alternative implementation supports the current
- * group.
- */
- #if defined(MBEDTLS_ECP_INTERNAL_ALT)
- #endif
- #if defined(MBEDTLS_ECP_C)
- #include "mbedtls/ecp.h"
- #include "mbedtls/threading.h"
- #include "mbedtls/platform_util.h"
- #include <string.h>
- #if !defined(MBEDTLS_ECP_ALT)
- /* Parameter validation macros based on platform_util.h */
- #define ECP_VALIDATE_RET( cond ) \
- MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA )
- #define ECP_VALIDATE( cond ) \
- MBEDTLS_INTERNAL_VALIDATE( cond )
- #if defined(MBEDTLS_PLATFORM_C)
- #include "mbedtls/platform.h"
- #else
- #include <stdlib.h>
- #include <stdio.h>
- #define mbedtls_printf printf
- #define mbedtls_calloc calloc
- #define mbedtls_free free
- #endif
- #include "mbedtls/ecp_internal.h"
- #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
- !defined(inline) && !defined(__cplusplus)
- #define inline __inline
- #endif
- #if defined(MBEDTLS_SELF_TEST)
- /*
- * Counts of point addition and doubling, and field multiplications.
- * Used to test resistance of point multiplication to simple timing attacks.
- */
- static unsigned long add_count, dbl_count, mul_count;
- #endif
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- /*
- * Maximum number of "basic operations" to be done in a row.
- *
- * Default value 0 means that ECC operations will not yield.
- * Note that regardless of the value of ecp_max_ops, always at
- * least one step is performed before yielding.
- *
- * Setting ecp_max_ops=1 can be suitable for testing purposes
- * as it will interrupt computation at all possible points.
- */
- static unsigned ecp_max_ops = 0;
- /*
- * Set ecp_max_ops
- */
- void mbedtls_ecp_set_max_ops( unsigned max_ops )
- {
- ecp_max_ops = max_ops;
- }
- /*
- * Check if restart is enabled
- */
- int mbedtls_ecp_restart_is_enabled( void )
- {
- return( ecp_max_ops != 0 );
- }
- /*
- * Restart sub-context for ecp_mul_comb()
- */
- struct mbedtls_ecp_restart_mul
- {
- mbedtls_ecp_point R; /* current intermediate result */
- size_t i; /* current index in various loops, 0 outside */
- mbedtls_ecp_point *T; /* table for precomputed points */
- unsigned char T_size; /* number of points in table T */
- enum { /* what were we doing last time we returned? */
- ecp_rsm_init = 0, /* nothing so far, dummy initial state */
- ecp_rsm_pre_dbl, /* precompute 2^n multiples */
- ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
- ecp_rsm_pre_add, /* precompute remaining points by adding */
- ecp_rsm_pre_norm_add, /* normalize all precomputed points */
- ecp_rsm_comb_core, /* ecp_mul_comb_core() */
- ecp_rsm_final_norm, /* do the final normalization */
- } state;
- };
- /*
- * Init restart_mul sub-context
- */
- static void ecp_restart_rsm_init( mbedtls_ecp_restart_mul_ctx *ctx )
- {
- mbedtls_ecp_point_init( &ctx->R );
- ctx->i = 0;
- ctx->T = NULL;
- ctx->T_size = 0;
- ctx->state = ecp_rsm_init;
- }
- /*
- * Free the components of a restart_mul sub-context
- */
- static void ecp_restart_rsm_free( mbedtls_ecp_restart_mul_ctx *ctx )
- {
- unsigned char i;
- if( ctx == NULL )
- return;
- mbedtls_ecp_point_free( &ctx->R );
- if( ctx->T != NULL )
- {
- for( i = 0; i < ctx->T_size; i++ )
- mbedtls_ecp_point_free( ctx->T + i );
- mbedtls_free( ctx->T );
- }
- ecp_restart_rsm_init( ctx );
- }
- /*
- * Restart context for ecp_muladd()
- */
- struct mbedtls_ecp_restart_muladd
- {
- mbedtls_ecp_point mP; /* mP value */
- mbedtls_ecp_point R; /* R intermediate result */
- enum { /* what should we do next? */
- ecp_rsma_mul1 = 0, /* first multiplication */
- ecp_rsma_mul2, /* second multiplication */
- ecp_rsma_add, /* addition */
- ecp_rsma_norm, /* normalization */
- } state;
- };
- /*
- * Init restart_muladd sub-context
- */
- static void ecp_restart_ma_init( mbedtls_ecp_restart_muladd_ctx *ctx )
- {
- mbedtls_ecp_point_init( &ctx->mP );
- mbedtls_ecp_point_init( &ctx->R );
- ctx->state = ecp_rsma_mul1;
- }
- /*
- * Free the components of a restart_muladd sub-context
- */
- static void ecp_restart_ma_free( mbedtls_ecp_restart_muladd_ctx *ctx )
- {
- if( ctx == NULL )
- return;
- mbedtls_ecp_point_free( &ctx->mP );
- mbedtls_ecp_point_free( &ctx->R );
- ecp_restart_ma_init( ctx );
- }
- /*
- * Initialize a restart context
- */
- void mbedtls_ecp_restart_init( mbedtls_ecp_restart_ctx *ctx )
- {
- ECP_VALIDATE( ctx != NULL );
- ctx->ops_done = 0;
- ctx->depth = 0;
- ctx->rsm = NULL;
- ctx->ma = NULL;
- }
- /*
- * Free the components of a restart context
- */
- void mbedtls_ecp_restart_free( mbedtls_ecp_restart_ctx *ctx )
- {
- if( ctx == NULL )
- return;
- ecp_restart_rsm_free( ctx->rsm );
- mbedtls_free( ctx->rsm );
- ecp_restart_ma_free( ctx->ma );
- mbedtls_free( ctx->ma );
- mbedtls_ecp_restart_init( ctx );
- }
- /*
- * Check if we can do the next step
- */
- int mbedtls_ecp_check_budget( const mbedtls_ecp_group *grp,
- mbedtls_ecp_restart_ctx *rs_ctx,
- unsigned ops )
- {
- ECP_VALIDATE_RET( grp != NULL );
- if( rs_ctx != NULL && ecp_max_ops != 0 )
- {
- /* scale depending on curve size: the chosen reference is 256-bit,
- * and multiplication is quadratic. Round to the closest integer. */
- if( grp->pbits >= 512 )
- ops *= 4;
- else if( grp->pbits >= 384 )
- ops *= 2;
- /* Avoid infinite loops: always allow first step.
- * Because of that, however, it's not generally true
- * that ops_done <= ecp_max_ops, so the check
- * ops_done > ecp_max_ops below is mandatory. */
- if( ( rs_ctx->ops_done != 0 ) &&
- ( rs_ctx->ops_done > ecp_max_ops ||
- ops > ecp_max_ops - rs_ctx->ops_done ) )
- {
- return( MBEDTLS_ERR_ECP_IN_PROGRESS );
- }
- /* update running count */
- rs_ctx->ops_done += ops;
- }
- return( 0 );
- }
- /* Call this when entering a function that needs its own sub-context */
- #define ECP_RS_ENTER( SUB ) do { \
- /* reset ops count for this call if top-level */ \
- if( rs_ctx != NULL && rs_ctx->depth++ == 0 ) \
- rs_ctx->ops_done = 0; \
- \
- /* set up our own sub-context if needed */ \
- if( mbedtls_ecp_restart_is_enabled() && \
- rs_ctx != NULL && rs_ctx->SUB == NULL ) \
- { \
- rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) ); \
- if( rs_ctx->SUB == NULL ) \
- return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); \
- \
- ecp_restart_## SUB ##_init( rs_ctx->SUB ); \
- } \
- } while( 0 )
- /* Call this when leaving a function that needs its own sub-context */
- #define ECP_RS_LEAVE( SUB ) do { \
- /* clear our sub-context when not in progress (done or error) */ \
- if( rs_ctx != NULL && rs_ctx->SUB != NULL && \
- ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) \
- { \
- ecp_restart_## SUB ##_free( rs_ctx->SUB ); \
- mbedtls_free( rs_ctx->SUB ); \
- rs_ctx->SUB = NULL; \
- } \
- \
- if( rs_ctx != NULL ) \
- rs_ctx->depth--; \
- } while( 0 )
- #else /* MBEDTLS_ECP_RESTARTABLE */
- #define ECP_RS_ENTER( sub ) (void) rs_ctx;
- #define ECP_RS_LEAVE( sub ) (void) rs_ctx;
- #endif /* MBEDTLS_ECP_RESTARTABLE */
- #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
- #define ECP_SHORTWEIERSTRASS
- #endif
- #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
- defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
- #define ECP_MONTGOMERY
- #endif
- /*
- * Curve types: internal for now, might be exposed later
- */
- typedef enum
- {
- ECP_TYPE_NONE = 0,
- ECP_TYPE_SHORT_WEIERSTRASS, /* y^2 = x^3 + a x + b */
- ECP_TYPE_MONTGOMERY, /* y^2 = x^3 + a x^2 + x */
- } ecp_curve_type;
- /*
- * List of supported curves:
- * - internal ID
- * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
- * - size in bits
- * - readable name
- *
- * Curves are listed in order: largest curves first, and for a given size,
- * fastest curves first. This provides the default order for the SSL module.
- *
- * Reminder: update profiles in x509_crt.c when adding a new curves!
- */
- static const mbedtls_ecp_curve_info ecp_supported_curves[] =
- {
- #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
- { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
- { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
- { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
- { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
- { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
- { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
- #endif
- { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
- };
- #define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
- sizeof( ecp_supported_curves[0] )
- static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
- /*
- * List of supported curves and associated info
- */
- const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
- {
- return( ecp_supported_curves );
- }
- /*
- * List of supported curves, group ID only
- */
- const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
- {
- static int init_done = 0;
- if( ! init_done )
- {
- size_t i = 0;
- const mbedtls_ecp_curve_info *curve_info;
- for( curve_info = mbedtls_ecp_curve_list();
- curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
- curve_info++ )
- {
- ecp_supported_grp_id[i++] = curve_info->grp_id;
- }
- ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
- init_done = 1;
- }
- return( ecp_supported_grp_id );
- }
- /*
- * Get the curve info for the internal identifier
- */
- const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
- {
- const mbedtls_ecp_curve_info *curve_info;
- for( curve_info = mbedtls_ecp_curve_list();
- curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
- curve_info++ )
- {
- if( curve_info->grp_id == grp_id )
- return( curve_info );
- }
- return( NULL );
- }
- /*
- * Get the curve info from the TLS identifier
- */
- const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
- {
- const mbedtls_ecp_curve_info *curve_info;
- for( curve_info = mbedtls_ecp_curve_list();
- curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
- curve_info++ )
- {
- if( curve_info->tls_id == tls_id )
- return( curve_info );
- }
- return( NULL );
- }
- /*
- * Get the curve info from the name
- */
- const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
- {
- const mbedtls_ecp_curve_info *curve_info;
- if( name == NULL )
- return( NULL );
- for( curve_info = mbedtls_ecp_curve_list();
- curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
- curve_info++ )
- {
- if( strcmp( curve_info->name, name ) == 0 )
- return( curve_info );
- }
- return( NULL );
- }
- /*
- * Get the type of a curve
- */
- static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp )
- {
- if( grp->G.X.p == NULL )
- return( ECP_TYPE_NONE );
- if( grp->G.Y.p == NULL )
- return( ECP_TYPE_MONTGOMERY );
- else
- return( ECP_TYPE_SHORT_WEIERSTRASS );
- }
- /*
- * Initialize (the components of) a point
- */
- void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
- {
- ECP_VALIDATE( pt != NULL );
- mbedtls_mpi_init( &pt->X );
- mbedtls_mpi_init( &pt->Y );
- mbedtls_mpi_init( &pt->Z );
- }
- /*
- * Initialize (the components of) a group
- */
- void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
- {
- ECP_VALIDATE( grp != NULL );
- grp->id = MBEDTLS_ECP_DP_NONE;
- mbedtls_mpi_init( &grp->P );
- mbedtls_mpi_init( &grp->A );
- mbedtls_mpi_init( &grp->B );
- mbedtls_ecp_point_init( &grp->G );
- mbedtls_mpi_init( &grp->N );
- grp->pbits = 0;
- grp->nbits = 0;
- grp->h = 0;
- grp->modp = NULL;
- grp->t_pre = NULL;
- grp->t_post = NULL;
- grp->t_data = NULL;
- grp->T = NULL;
- grp->T_size = 0;
- }
- /*
- * Initialize (the components of) a key pair
- */
- void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
- {
- ECP_VALIDATE( key != NULL );
- mbedtls_ecp_group_init( &key->grp );
- mbedtls_mpi_init( &key->d );
- mbedtls_ecp_point_init( &key->Q );
- }
- /*
- * Unallocate (the components of) a point
- */
- void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
- {
- if( pt == NULL )
- return;
- mbedtls_mpi_free( &( pt->X ) );
- mbedtls_mpi_free( &( pt->Y ) );
- mbedtls_mpi_free( &( pt->Z ) );
- }
- /*
- * Unallocate (the components of) a group
- */
- void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
- {
- size_t i;
- if( grp == NULL )
- return;
- if( grp->h != 1 )
- {
- mbedtls_mpi_free( &grp->P );
- mbedtls_mpi_free( &grp->A );
- mbedtls_mpi_free( &grp->B );
- mbedtls_ecp_point_free( &grp->G );
- mbedtls_mpi_free( &grp->N );
- }
- if( grp->T != NULL )
- {
- for( i = 0; i < grp->T_size; i++ )
- mbedtls_ecp_point_free( &grp->T[i] );
- mbedtls_free( grp->T );
- }
- mbedtls_platform_zeroize( grp, sizeof( mbedtls_ecp_group ) );
- }
- /*
- * Unallocate (the components of) a key pair
- */
- void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
- {
- if( key == NULL )
- return;
- mbedtls_ecp_group_free( &key->grp );
- mbedtls_mpi_free( &key->d );
- mbedtls_ecp_point_free( &key->Q );
- }
- /*
- * Copy the contents of a point
- */
- int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
- {
- int ret;
- ECP_VALIDATE_RET( P != NULL );
- ECP_VALIDATE_RET( Q != NULL );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
- cleanup:
- return( ret );
- }
- /*
- * Copy the contents of a group object
- */
- int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
- {
- ECP_VALIDATE_RET( dst != NULL );
- ECP_VALIDATE_RET( src != NULL );
- return( mbedtls_ecp_group_load( dst, src->id ) );
- }
- /*
- * Set point to zero
- */
- int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
- {
- int ret;
- ECP_VALIDATE_RET( pt != NULL );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
- cleanup:
- return( ret );
- }
- /*
- * Tell if a point is zero
- */
- int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
- {
- ECP_VALIDATE_RET( pt != NULL );
- return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
- }
- /*
- * Compare two points lazily
- */
- int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
- const mbedtls_ecp_point *Q )
- {
- ECP_VALIDATE_RET( P != NULL );
- ECP_VALIDATE_RET( Q != NULL );
- if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
- mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
- mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
- {
- return( 0 );
- }
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- /*
- * Import a non-zero point from ASCII strings
- */
- int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
- const char *x, const char *y )
- {
- int ret;
- ECP_VALIDATE_RET( P != NULL );
- ECP_VALIDATE_RET( x != NULL );
- ECP_VALIDATE_RET( y != NULL );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
- cleanup:
- return( ret );
- }
- /*
- * Export a point into unsigned binary data (SEC1 2.3.3)
- */
- int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp,
- const mbedtls_ecp_point *P,
- int format, size_t *olen,
- unsigned char *buf, size_t buflen )
- {
- int ret = 0;
- size_t plen;
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( P != NULL );
- ECP_VALIDATE_RET( olen != NULL );
- ECP_VALIDATE_RET( buf != NULL );
- ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
- format == MBEDTLS_ECP_PF_COMPRESSED );
- /*
- * Common case: P == 0
- */
- if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
- {
- if( buflen < 1 )
- return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
- buf[0] = 0x00;
- *olen = 1;
- return( 0 );
- }
- plen = mbedtls_mpi_size( &grp->P );
- if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
- {
- *olen = 2 * plen + 1;
- if( buflen < *olen )
- return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
- buf[0] = 0x04;
- MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
- }
- else if( format == MBEDTLS_ECP_PF_COMPRESSED )
- {
- *olen = plen + 1;
- if( buflen < *olen )
- return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
- buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
- }
- cleanup:
- return( ret );
- }
- /*
- * Import a point from unsigned binary data (SEC1 2.3.4)
- */
- int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *pt,
- const unsigned char *buf, size_t ilen )
- {
- int ret;
- size_t plen;
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( pt != NULL );
- ECP_VALIDATE_RET( buf != NULL );
- if( ilen < 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- if( buf[0] == 0x00 )
- {
- if( ilen == 1 )
- return( mbedtls_ecp_set_zero( pt ) );
- else
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- plen = mbedtls_mpi_size( &grp->P );
- if( buf[0] != 0x04 )
- return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
- if( ilen != 2 * plen + 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
- cleanup:
- return( ret );
- }
- /*
- * Import a point from a TLS ECPoint record (RFC 4492)
- * struct {
- * opaque point <1..2^8-1>;
- * } ECPoint;
- */
- int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *pt,
- const unsigned char **buf, size_t buf_len )
- {
- unsigned char data_len;
- const unsigned char *buf_start;
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( pt != NULL );
- ECP_VALIDATE_RET( buf != NULL );
- ECP_VALIDATE_RET( *buf != NULL );
- /*
- * We must have at least two bytes (1 for length, at least one for data)
- */
- if( buf_len < 2 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- data_len = *(*buf)++;
- if( data_len < 1 || data_len > buf_len - 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /*
- * Save buffer start for read_binary and update buf
- */
- buf_start = *buf;
- *buf += data_len;
- return( mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len ) );
- }
- /*
- * Export a point as a TLS ECPoint record (RFC 4492)
- * struct {
- * opaque point <1..2^8-1>;
- * } ECPoint;
- */
- int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
- int format, size_t *olen,
- unsigned char *buf, size_t blen )
- {
- int ret;
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( pt != NULL );
- ECP_VALIDATE_RET( olen != NULL );
- ECP_VALIDATE_RET( buf != NULL );
- ECP_VALIDATE_RET( format == MBEDTLS_ECP_PF_UNCOMPRESSED ||
- format == MBEDTLS_ECP_PF_COMPRESSED );
- /*
- * buffer length must be at least one, for our length byte
- */
- if( blen < 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
- olen, buf + 1, blen - 1) ) != 0 )
- return( ret );
- /*
- * write length to the first byte and update total length
- */
- buf[0] = (unsigned char) *olen;
- ++*olen;
- return( 0 );
- }
- /*
- * Set a group from an ECParameters record (RFC 4492)
- */
- int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp,
- const unsigned char **buf, size_t len )
- {
- int ret;
- mbedtls_ecp_group_id grp_id;
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( buf != NULL );
- ECP_VALIDATE_RET( *buf != NULL );
- if( ( ret = mbedtls_ecp_tls_read_group_id( &grp_id, buf, len ) ) != 0 )
- return( ret );
- return( mbedtls_ecp_group_load( grp, grp_id ) );
- }
- /*
- * Read a group id from an ECParameters record (RFC 4492) and convert it to
- * mbedtls_ecp_group_id.
- */
- int mbedtls_ecp_tls_read_group_id( mbedtls_ecp_group_id *grp,
- const unsigned char **buf, size_t len )
- {
- uint16_t tls_id;
- const mbedtls_ecp_curve_info *curve_info;
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( buf != NULL );
- ECP_VALIDATE_RET( *buf != NULL );
- /*
- * We expect at least three bytes (see below)
- */
- if( len < 3 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /*
- * First byte is curve_type; only named_curve is handled
- */
- if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /*
- * Next two bytes are the namedcurve value
- */
- tls_id = *(*buf)++;
- tls_id <<= 8;
- tls_id |= *(*buf)++;
- if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
- return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
- *grp = curve_info->grp_id;
- return( 0 );
- }
- /*
- * Write the ECParameters record corresponding to a group (RFC 4492)
- */
- int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
- unsigned char *buf, size_t blen )
- {
- const mbedtls_ecp_curve_info *curve_info;
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( buf != NULL );
- ECP_VALIDATE_RET( olen != NULL );
- if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /*
- * We are going to write 3 bytes (see below)
- */
- *olen = 3;
- if( blen < *olen )
- return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
- /*
- * First byte is curve_type, always named_curve
- */
- *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
- /*
- * Next two bytes are the namedcurve value
- */
- buf[0] = curve_info->tls_id >> 8;
- buf[1] = curve_info->tls_id & 0xFF;
- return( 0 );
- }
- /*
- * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
- * See the documentation of struct mbedtls_ecp_group.
- *
- * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
- */
- static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
- {
- int ret;
- if( grp->modp == NULL )
- return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
- /* N->s < 0 is a much faster test, which fails only if N is 0 */
- if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
- mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
- {
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- MBEDTLS_MPI_CHK( grp->modp( N ) );
- /* N->s < 0 is a much faster test, which fails only if N is 0 */
- while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
- while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
- /* we known P, N and the result are positive */
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
- cleanup:
- return( ret );
- }
- /*
- * Fast mod-p functions expect their argument to be in the 0..p^2 range.
- *
- * In order to guarantee that, we need to ensure that operands of
- * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
- * bring the result back to this range.
- *
- * The following macros are shortcuts for doing that.
- */
- /*
- * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
- */
- #if defined(MBEDTLS_SELF_TEST)
- #define INC_MUL_COUNT mul_count++;
- #else
- #define INC_MUL_COUNT
- #endif
- #define MOD_MUL( N ) \
- do \
- { \
- MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) ); \
- INC_MUL_COUNT \
- } while( 0 )
- /*
- * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
- * N->s < 0 is a very fast test, which fails only if N is 0
- */
- #define MOD_SUB( N ) \
- while( (N).s < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 ) \
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) )
- /*
- * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
- * We known P, N and the result are positive, so sub_abs is correct, and
- * a bit faster.
- */
- #define MOD_ADD( N ) \
- while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 ) \
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) )
- #if defined(ECP_SHORTWEIERSTRASS)
- /*
- * For curves in short Weierstrass form, we do all the internal operations in
- * Jacobian coordinates.
- *
- * For multiplication, we'll use a comb method with coutermeasueres against
- * SPA, hence timing attacks.
- */
- /*
- * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
- * Cost: 1N := 1I + 3M + 1S
- */
- static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
- {
- int ret;
- mbedtls_mpi Zi, ZZi;
- if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
- return( 0 );
- #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
- if( mbedtls_internal_ecp_grp_capable( grp ) )
- return( mbedtls_internal_ecp_normalize_jac( grp, pt ) );
- #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
- mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
- /*
- * X = X / Z^2 mod p
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X );
- /*
- * Y = Y / Z^3 mod p
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y );
- /*
- * Z = 1
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
- cleanup:
- mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
- return( ret );
- }
- /*
- * Normalize jacobian coordinates of an array of (pointers to) points,
- * using Montgomery's trick to perform only one inversion mod P.
- * (See for example Cohen's "A Course in Computational Algebraic Number
- * Theory", Algorithm 10.3.4.)
- *
- * Warning: fails (returning an error) if one of the points is zero!
- * This should never happen, see choice of w in ecp_mul_comb().
- *
- * Cost: 1N(t) := 1I + (6t - 3)M + 1S
- */
- static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *T[], size_t T_size )
- {
- int ret;
- size_t i;
- mbedtls_mpi *c, u, Zi, ZZi;
- if( T_size < 2 )
- return( ecp_normalize_jac( grp, *T ) );
- #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
- if( mbedtls_internal_ecp_grp_capable( grp ) )
- return( mbedtls_internal_ecp_normalize_jac_many( grp, T, T_size ) );
- #endif
- if( ( c = mbedtls_calloc( T_size, sizeof( mbedtls_mpi ) ) ) == NULL )
- return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
- for( i = 0; i < T_size; i++ )
- mbedtls_mpi_init( &c[i] );
- mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
- /*
- * c[i] = Z_0 * ... * Z_i
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
- for( i = 1; i < T_size; i++ )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
- MOD_MUL( c[i] );
- }
- /*
- * u = 1 / (Z_0 * ... * Z_n) mod P
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[T_size-1], &grp->P ) );
- for( i = T_size - 1; ; i-- )
- {
- /*
- * Zi = 1 / Z_i mod p
- * u = 1 / (Z_0 * ... * Z_i) mod P
- */
- if( i == 0 ) {
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u, &u, &T[i]->Z ) ); MOD_MUL( u );
- }
- /*
- * proceed as in normalize()
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi ) ); MOD_MUL( T[i]->Y );
- /*
- * Post-precessing: reclaim some memory by shrinking coordinates
- * - not storing Z (always 1)
- * - shrinking other coordinates, but still keeping the same number of
- * limbs as P, as otherwise it will too likely be regrown too fast.
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
- mbedtls_mpi_free( &T[i]->Z );
- if( i == 0 )
- break;
- }
- cleanup:
- mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
- for( i = 0; i < T_size; i++ )
- mbedtls_mpi_free( &c[i] );
- mbedtls_free( c );
- return( ret );
- }
- /*
- * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
- * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
- */
- static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *Q,
- unsigned char inv )
- {
- int ret;
- unsigned char nonzero;
- mbedtls_mpi mQY;
- mbedtls_mpi_init( &mQY );
- /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
- nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
- cleanup:
- mbedtls_mpi_free( &mQY );
- return( ret );
- }
- /*
- * Point doubling R = 2 P, Jacobian coordinates
- *
- * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
- *
- * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
- * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
- *
- * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
- *
- * Cost: 1D := 3M + 4S (A == 0)
- * 4M + 4S (A == -3)
- * 3M + 6S + 1a otherwise
- */
- static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_ecp_point *P )
- {
- int ret;
- mbedtls_mpi M, S, T, U;
- #if defined(MBEDTLS_SELF_TEST)
- dbl_count++;
- #endif
- #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
- if( mbedtls_internal_ecp_grp_capable( grp ) )
- return( mbedtls_internal_ecp_double_jac( grp, R, P ) );
- #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
- mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
- /* Special case for A = -3 */
- if( grp->A.p == NULL )
- {
- /* M = 3(X + Z^2)(X - Z^2) */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &P->X, &S ) ); MOD_ADD( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U, &P->X, &S ) ); MOD_SUB( U );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &T, &U ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
- }
- else
- {
- /* M = 3.X^2 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->X, &P->X ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
- /* Optimize away for "koblitz" curves with A = 0 */
- if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
- {
- /* M += A.Z^4 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &S, &S ) ); MOD_MUL( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &T, &grp->A ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &S ) ); MOD_ADD( M );
- }
- }
- /* S = 4.X.Y^2 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &P->Y, &P->Y ) ); MOD_MUL( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T, 1 ) ); MOD_ADD( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->X, &T ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S, 1 ) ); MOD_ADD( S );
- /* U = 8.Y^4 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U, &T, &T ) ); MOD_MUL( U );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
- /* T = M^2 - 2.S */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &M, &M ) ); MOD_MUL( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
- /* S = M(S - T) - U */
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S, &S, &T ) ); MOD_SUB( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &S, &M ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S, &S, &U ) ); MOD_SUB( S );
- /* U = 2.Y.Z */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U, &P->Y, &P->Z ) ); MOD_MUL( U );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
- cleanup:
- mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
- return( ret );
- }
- /*
- * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
- *
- * The coordinates of Q must be normalized (= affine),
- * but those of P don't need to. R is not normalized.
- *
- * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
- * None of these cases can happen as intermediate step in ecp_mul_comb():
- * - at each step, P, Q and R are multiples of the base point, the factor
- * being less than its order, so none of them is zero;
- * - Q is an odd multiple of the base point, P an even multiple,
- * due to the choice of precomputed points in the modified comb method.
- * So branches for these cases do not leak secret information.
- *
- * We accept Q->Z being unset (saving memory in tables) as meaning 1.
- *
- * Cost: 1A := 8M + 3S
- */
- static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
- {
- int ret;
- mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
- #if defined(MBEDTLS_SELF_TEST)
- add_count++;
- #endif
- #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
- if( mbedtls_internal_ecp_grp_capable( grp ) )
- return( mbedtls_internal_ecp_add_mixed( grp, R, P, Q ) );
- #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
- /*
- * Trivial cases: P == 0 or Q == 0 (case 1)
- */
- if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
- return( mbedtls_ecp_copy( R, Q ) );
- if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
- return( mbedtls_ecp_copy( R, P ) );
- /*
- * Make sure Q coordinates are normalized
- */
- if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
- mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
- /* Special cases (2) and (3) */
- if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
- {
- if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
- {
- ret = ecp_double_jac( grp, R, P );
- goto cleanup;
- }
- else
- {
- ret = mbedtls_ecp_set_zero( R );
- goto cleanup;
- }
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
- cleanup:
- mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
- mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
- return( ret );
- }
- /*
- * Randomize jacobian coordinates:
- * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
- * This is sort of the reverse operation of ecp_normalize_jac().
- *
- * This countermeasure was first suggested in [2].
- */
- static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
- {
- int ret;
- mbedtls_mpi l, ll;
- size_t p_size;
- int count = 0;
- #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
- if( mbedtls_internal_ecp_grp_capable( grp ) )
- return( mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng ) );
- #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
- p_size = ( grp->pbits + 7 ) / 8;
- mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
- /* Generate l such that 1 < l < p */
- do
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
- while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
- if( count++ > 10 )
- return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
- }
- while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
- /* Z = l * Z */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z, &pt->Z, &l ) ); MOD_MUL( pt->Z );
- /* X = l^2 * X */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll, &l, &l ) ); MOD_MUL( ll );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X, &pt->X, &ll ) ); MOD_MUL( pt->X );
- /* Y = l^3 * Y */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll, &ll, &l ) ); MOD_MUL( ll );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &ll ) ); MOD_MUL( pt->Y );
- cleanup:
- mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
- return( ret );
- }
- /*
- * Check and define parameters used by the comb method (see below for details)
- */
- #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
- #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
- #endif
- /* d = ceil( n / w ) */
- #define COMB_MAX_D ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
- /* number of precomputed points */
- #define COMB_MAX_PRE ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
- /*
- * Compute the representation of m that will be used with our comb method.
- *
- * The basic comb method is described in GECC 3.44 for example. We use a
- * modified version that provides resistance to SPA by avoiding zero
- * digits in the representation as in [3]. We modify the method further by
- * requiring that all K_i be odd, which has the small cost that our
- * representation uses one more K_i, due to carries, but saves on the size of
- * the precomputed table.
- *
- * Summary of the comb method and its modifications:
- *
- * - The goal is to compute m*P for some w*d-bit integer m.
- *
- * - The basic comb method splits m into the w-bit integers
- * x[0] .. x[d-1] where x[i] consists of the bits in m whose
- * index has residue i modulo d, and computes m * P as
- * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
- * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
- *
- * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
- * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
- * thereby successively converting it into a form where all summands
- * are nonzero, at the cost of negative summands. This is the basic idea of [3].
- *
- * - More generally, even if x[i+1] != 0, we can first transform the sum as
- * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
- * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
- * Performing and iterating this procedure for those x[i] that are even
- * (keeping track of carry), we can transform the original sum into one of the form
- * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
- * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
- * which is why we are only computing half of it in the first place in
- * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
- *
- * - For the sake of compactness, only the seven low-order bits of x[i]
- * are used to represent its absolute value (K_i in the paper), and the msb
- * of x[i] encodes the sign (s_i in the paper): it is set if and only if
- * if s_i == -1;
- *
- * Calling conventions:
- * - x is an array of size d + 1
- * - w is the size, ie number of teeth, of the comb, and must be between
- * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
- * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
- * (the result will be incorrect if these assumptions are not satisfied)
- */
- static void ecp_comb_recode_core( unsigned char x[], size_t d,
- unsigned char w, const mbedtls_mpi *m )
- {
- size_t i, j;
- unsigned char c, cc, adjust;
- memset( x, 0, d+1 );
- /* First get the classical comb values (except for x_d = 0) */
- for( i = 0; i < d; i++ )
- for( j = 0; j < w; j++ )
- x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
- /* Now make sure x_1 .. x_d are odd */
- c = 0;
- for( i = 1; i <= d; i++ )
- {
- /* Add carry and update it */
- cc = x[i] & c;
- x[i] = x[i] ^ c;
- c = cc;
- /* Adjust if needed, avoiding branches */
- adjust = 1 - ( x[i] & 0x01 );
- c |= x[i] & ( x[i-1] * adjust );
- x[i] = x[i] ^ ( x[i-1] * adjust );
- x[i-1] |= adjust << 7;
- }
- }
- /*
- * Precompute points for the adapted comb method
- *
- * Assumption: T must be able to hold 2^{w - 1} elements.
- *
- * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
- * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
- *
- * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
- *
- * Note: Even comb values (those where P would be omitted from the
- * sum defining T[i] above) are not needed in our adaption
- * the comb method. See ecp_comb_recode_core().
- *
- * This function currently works in four steps:
- * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
- * (2) [norm_dbl] Normalization of coordinates of these T[i]
- * (3) [add] Computation of all T[i]
- * (4) [norm_add] Normalization of all T[i]
- *
- * Step 1 can be interrupted but not the others; together with the final
- * coordinate normalization they are the largest steps done at once, depending
- * on the window size. Here are operation counts for P-256:
- *
- * step (2) (3) (4)
- * w = 5 142 165 208
- * w = 4 136 77 160
- * w = 3 130 33 136
- * w = 2 124 11 124
- *
- * So if ECC operations are blocking for too long even with a low max_ops
- * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
- * to minimize maximum blocking time.
- */
- static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
- unsigned char w, size_t d,
- mbedtls_ecp_restart_ctx *rs_ctx )
- {
- int ret;
- unsigned char i;
- size_t j = 0;
- const unsigned char T_size = 1U << ( w - 1 );
- mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL )
- {
- if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
- goto dbl;
- if( rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl )
- goto norm_dbl;
- if( rs_ctx->rsm->state == ecp_rsm_pre_add )
- goto add;
- if( rs_ctx->rsm->state == ecp_rsm_pre_norm_add )
- goto norm_add;
- }
- #else
- (void) rs_ctx;
- #endif
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL )
- {
- rs_ctx->rsm->state = ecp_rsm_pre_dbl;
- /* initial state for the loop */
- rs_ctx->rsm->i = 0;
- }
- dbl:
- #endif
- /*
- * Set T[0] = P and
- * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
- */
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
- j = rs_ctx->rsm->i;
- else
- #endif
- j = 0;
- for( ; j < d * ( w - 1 ); j++ )
- {
- MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL );
- i = 1U << ( j / d );
- cur = T + i;
- if( j % d == 0 )
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
- MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
- }
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL )
- rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
- norm_dbl:
- #endif
- /*
- * Normalize current elements in T. As T has holes,
- * use an auxiliary array of pointers to elements in T.
- */
- j = 0;
- for( i = 1; i < T_size; i <<= 1 )
- TT[j++] = T + i;
- MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
- MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL )
- rs_ctx->rsm->state = ecp_rsm_pre_add;
- add:
- #endif
- /*
- * Compute the remaining ones using the minimal number of additions
- * Be careful to update T[2^l] only after using it!
- */
- MBEDTLS_ECP_BUDGET( ( T_size - 1 ) * MBEDTLS_ECP_OPS_ADD );
- for( i = 1; i < T_size; i <<= 1 )
- {
- j = i;
- while( j-- )
- MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
- }
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL )
- rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
- norm_add:
- #endif
- /*
- * Normalize final elements in T. Even though there are no holes now, we
- * still need the auxiliary array for homogeneity with the previous
- * call. Also, skip T[0] which is already normalised, being a copy of P.
- */
- for( j = 0; j + 1 < T_size; j++ )
- TT[j] = T + j + 1;
- MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV + 6 * j - 2 );
- MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, j ) );
- cleanup:
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
- ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
- {
- if( rs_ctx->rsm->state == ecp_rsm_pre_dbl )
- rs_ctx->rsm->i = j;
- }
- #endif
- return( ret );
- }
- /*
- * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
- *
- * See ecp_comb_recode_core() for background
- */
- static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_ecp_point T[], unsigned char T_size,
- unsigned char i )
- {
- int ret;
- unsigned char ii, j;
- /* Ignore the "sign" bit and scale down */
- ii = ( i & 0x7Fu ) >> 1;
- /* Read the whole table to thwart cache-based timing attacks */
- for( j = 0; j < T_size; j++ )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
- }
- /* Safely invert result if i is "negative" */
- MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
- cleanup:
- return( ret );
- }
- /*
- * Core multiplication algorithm for the (modified) comb method.
- * This part is actually common with the basic comb method (GECC 3.44)
- *
- * Cost: d A + d D + 1 R
- */
- static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_ecp_point T[], unsigned char T_size,
- const unsigned char x[], size_t d,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng,
- mbedtls_ecp_restart_ctx *rs_ctx )
- {
- int ret;
- mbedtls_ecp_point Txi;
- size_t i;
- mbedtls_ecp_point_init( &Txi );
- #if !defined(MBEDTLS_ECP_RESTARTABLE)
- (void) rs_ctx;
- #endif
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
- rs_ctx->rsm->state != ecp_rsm_comb_core )
- {
- rs_ctx->rsm->i = 0;
- rs_ctx->rsm->state = ecp_rsm_comb_core;
- }
- /* new 'if' instead of nested for the sake of the 'else' branch */
- if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0 )
- {
- /* restore current index (R already pointing to rs_ctx->rsm->R) */
- i = rs_ctx->rsm->i;
- }
- else
- #endif
- {
- /* Start with a non-zero point and randomize its coordinates */
- i = d;
- MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, T_size, x[i] ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
- if( f_rng != 0 )
- MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
- }
- while( i != 0 )
- {
- MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD );
- --i;
- MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
- MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, T_size, x[i] ) );
- MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
- }
- cleanup:
- mbedtls_ecp_point_free( &Txi );
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL &&
- ret == MBEDTLS_ERR_ECP_IN_PROGRESS )
- {
- rs_ctx->rsm->i = i;
- /* no need to save R, already pointing to rs_ctx->rsm->R */
- }
- #endif
- return( ret );
- }
- /*
- * Recode the scalar to get constant-time comb multiplication
- *
- * As the actual scalar recoding needs an odd scalar as a starting point,
- * this wrapper ensures that by replacing m by N - m if necessary, and
- * informs the caller that the result of multiplication will be negated.
- *
- * This works because we only support large prime order for Short Weierstrass
- * curves, so N is always odd hence either m or N - m is.
- *
- * See ecp_comb_recode_core() for background.
- */
- static int ecp_comb_recode_scalar( const mbedtls_ecp_group *grp,
- const mbedtls_mpi *m,
- unsigned char k[COMB_MAX_D + 1],
- size_t d,
- unsigned char w,
- unsigned char *parity_trick )
- {
- int ret;
- mbedtls_mpi M, mm;
- mbedtls_mpi_init( &M );
- mbedtls_mpi_init( &mm );
- /* N is always odd (see above), just make extra sure */
- if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /* do we need the parity trick? */
- *parity_trick = ( mbedtls_mpi_get_bit( m, 0 ) == 0 );
- /* execute parity fix in constant time */
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, *parity_trick ) );
- /* actual scalar recoding */
- ecp_comb_recode_core( k, d, w, &M );
- cleanup:
- mbedtls_mpi_free( &mm );
- mbedtls_mpi_free( &M );
- return( ret );
- }
- /*
- * Perform comb multiplication (for short Weierstrass curves)
- * once the auxiliary table has been pre-computed.
- *
- * Scalar recoding may use a parity trick that makes us compute -m * P,
- * if that is the case we'll need to recover m * P at the end.
- */
- static int ecp_mul_comb_after_precomp( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *R,
- const mbedtls_mpi *m,
- const mbedtls_ecp_point *T,
- unsigned char T_size,
- unsigned char w,
- size_t d,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng,
- mbedtls_ecp_restart_ctx *rs_ctx )
- {
- int ret;
- unsigned char parity_trick;
- unsigned char k[COMB_MAX_D + 1];
- mbedtls_ecp_point *RR = R;
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL )
- {
- RR = &rs_ctx->rsm->R;
- if( rs_ctx->rsm->state == ecp_rsm_final_norm )
- goto final_norm;
- }
- #endif
- MBEDTLS_MPI_CHK( ecp_comb_recode_scalar( grp, m, k, d, w,
- &parity_trick ) );
- MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, RR, T, T_size, k, d,
- f_rng, p_rng, rs_ctx ) );
- MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, RR, parity_trick ) );
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL )
- rs_ctx->rsm->state = ecp_rsm_final_norm;
- final_norm:
- #endif
- MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
- MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, RR ) );
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL )
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, RR ) );
- #endif
- cleanup:
- return( ret );
- }
- /*
- * Pick window size based on curve size and whether we optimize for base point
- */
- static unsigned char ecp_pick_window_size( const mbedtls_ecp_group *grp,
- unsigned char p_eq_g )
- {
- unsigned char w;
- /*
- * Minimize the number of multiplications, that is minimize
- * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
- * (see costs of the various parts, with 1S = 1M)
- */
- w = grp->nbits >= 384 ? 5 : 4;
- /*
- * If P == G, pre-compute a bit more, since this may be re-used later.
- * Just adding one avoids upping the cost of the first mul too much,
- * and the memory cost too.
- */
- if( p_eq_g )
- w++;
- /*
- * Make sure w is within bounds.
- * (The last test is useful only for very small curves in the test suite.)
- */
- if( w > MBEDTLS_ECP_WINDOW_SIZE )
- w = MBEDTLS_ECP_WINDOW_SIZE;
- if( w >= grp->nbits )
- w = 2;
- return( w );
- }
- /*
- * Multiplication using the comb method - for curves in short Weierstrass form
- *
- * This function is mainly responsible for administrative work:
- * - managing the restart context if enabled
- * - managing the table of precomputed points (passed between the below two
- * functions): allocation, computation, ownership tranfer, freeing.
- *
- * It delegates the actual arithmetic work to:
- * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
- *
- * See comments on ecp_comb_recode_core() regarding the computation strategy.
- */
- static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_mpi *m, const mbedtls_ecp_point *P,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng,
- mbedtls_ecp_restart_ctx *rs_ctx )
- {
- int ret;
- unsigned char w, p_eq_g, i;
- size_t d;
- unsigned char T_size, T_ok;
- mbedtls_ecp_point *T;
- ECP_RS_ENTER( rsm );
- /* Is P the base point ? */
- #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
- p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
- mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
- #else
- p_eq_g = 0;
- #endif
- /* Pick window size and deduce related sizes */
- w = ecp_pick_window_size( grp, p_eq_g );
- T_size = 1U << ( w - 1 );
- d = ( grp->nbits + w - 1 ) / w;
- /* Pre-computed table: do we have it already for the base point? */
- if( p_eq_g && grp->T != NULL )
- {
- /* second pointer to the same table, will be deleted on exit */
- T = grp->T;
- T_ok = 1;
- }
- else
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- /* Pre-computed table: do we have one in progress? complete? */
- if( rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL )
- {
- /* transfer ownership of T from rsm to local function */
- T = rs_ctx->rsm->T;
- rs_ctx->rsm->T = NULL;
- rs_ctx->rsm->T_size = 0;
- /* This effectively jumps to the call to mul_comb_after_precomp() */
- T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
- }
- else
- #endif
- /* Allocate table if we didn't have any */
- {
- T = mbedtls_calloc( T_size, sizeof( mbedtls_ecp_point ) );
- if( T == NULL )
- {
- ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
- goto cleanup;
- }
- for( i = 0; i < T_size; i++ )
- mbedtls_ecp_point_init( &T[i] );
- T_ok = 0;
- }
- /* Compute table (or finish computing it) if not done already */
- if( !T_ok )
- {
- MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d, rs_ctx ) );
- if( p_eq_g )
- {
- /* almost transfer ownership of T to the group, but keep a copy of
- * the pointer to use for calling the next function more easily */
- grp->T = T;
- grp->T_size = T_size;
- }
- }
- /* Actual comb multiplication using precomputed points */
- MBEDTLS_MPI_CHK( ecp_mul_comb_after_precomp( grp, R, m,
- T, T_size, w, d,
- f_rng, p_rng, rs_ctx ) );
- cleanup:
- /* does T belong to the group? */
- if( T == grp->T )
- T = NULL;
- /* does T belong to the restart context? */
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL )
- {
- /* transfer ownership of T from local function to rsm */
- rs_ctx->rsm->T_size = T_size;
- rs_ctx->rsm->T = T;
- T = NULL;
- }
- #endif
- /* did T belong to us? then let's destroy it! */
- if( T != NULL )
- {
- for( i = 0; i < T_size; i++ )
- mbedtls_ecp_point_free( &T[i] );
- mbedtls_free( T );
- }
- /* don't free R while in progress in case R == P */
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( ret != MBEDTLS_ERR_ECP_IN_PROGRESS )
- #endif
- /* prevent caller from using invalid value */
- if( ret != 0 )
- mbedtls_ecp_point_free( R );
- ECP_RS_LEAVE( rsm );
- return( ret );
- }
- #endif /* ECP_SHORTWEIERSTRASS */
- #if defined(ECP_MONTGOMERY)
- /*
- * For Montgomery curves, we do all the internal arithmetic in projective
- * coordinates. Import/export of points uses only the x coordinates, which is
- * internaly represented as X / Z.
- *
- * For scalar multiplication, we'll use a Montgomery ladder.
- */
- /*
- * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
- * Cost: 1M + 1I
- */
- static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
- {
- int ret;
- #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
- if( mbedtls_internal_ecp_grp_capable( grp ) )
- return( mbedtls_internal_ecp_normalize_mxz( grp, P ) );
- #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
- cleanup:
- return( ret );
- }
- /*
- * Randomize projective x/z coordinates:
- * (X, Z) -> (l X, l Z) for random l
- * This is sort of the reverse operation of ecp_normalize_mxz().
- *
- * This countermeasure was first suggested in [2].
- * Cost: 2M
- */
- static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
- {
- int ret;
- mbedtls_mpi l;
- size_t p_size;
- int count = 0;
- #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
- if( mbedtls_internal_ecp_grp_capable( grp ) )
- return( mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng );
- #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
- p_size = ( grp->pbits + 7 ) / 8;
- mbedtls_mpi_init( &l );
- /* Generate l such that 1 < l < p */
- do
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );
- while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
- if( count++ > 10 )
- return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
- }
- while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
- cleanup:
- mbedtls_mpi_free( &l );
- return( ret );
- }
- /*
- * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
- * for Montgomery curves in x/z coordinates.
- *
- * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
- * with
- * d = X1
- * P = (X2, Z2)
- * Q = (X3, Z3)
- * R = (X4, Z4)
- * S = (X5, Z5)
- * and eliminating temporary variables tO, ..., t4.
- *
- * Cost: 5M + 4S
- */
- static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *R, mbedtls_ecp_point *S,
- const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
- const mbedtls_mpi *d )
- {
- int ret;
- mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
- #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
- if( mbedtls_internal_ecp_grp_capable( grp ) )
- return( mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d ) );
- #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
- mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
- mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
- mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A, &P->X, &P->Z ) ); MOD_ADD( A );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA, &A, &A ) ); MOD_MUL( AA );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B, &P->X, &P->Z ) ); MOD_SUB( B );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB, &B, &B ) ); MOD_MUL( BB );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E, &AA, &BB ) ); MOD_SUB( E );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C, &Q->X, &Q->Z ) ); MOD_ADD( C );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D, &Q->X, &Q->Z ) ); MOD_SUB( D );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA, &D, &A ) ); MOD_MUL( DA );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB, &C, &B ) ); MOD_MUL( CB );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA, &CB ) ); MOD_MUL( S->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X, &S->X ) ); MOD_MUL( S->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA, &CB ) ); MOD_SUB( S->Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z, &S->Z ) ); MOD_MUL( S->Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d, &S->Z ) ); MOD_MUL( S->Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA, &BB ) ); MOD_MUL( R->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E ) ); MOD_MUL( R->Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB, &R->Z ) ); MOD_ADD( R->Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E, &R->Z ) ); MOD_MUL( R->Z );
- cleanup:
- mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
- mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
- mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
- return( ret );
- }
- /*
- * Multiplication with Montgomery ladder in x/z coordinates,
- * for curves in Montgomery form
- */
- static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_mpi *m, const mbedtls_ecp_point *P,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret;
- size_t i;
- unsigned char b;
- mbedtls_ecp_point RP;
- mbedtls_mpi PX;
- mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
- /* Save PX and read from P before writing to R, in case P == R */
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
- /* Set R to zero in modified x/z coordinates */
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
- mbedtls_mpi_free( &R->Y );
- /* RP.X might be sligtly larger than P, so reduce it */
- MOD_ADD( RP.X );
- /* Randomize coordinates of the starting point */
- if( f_rng != NULL )
- MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
- /* Loop invariant: R = result so far, RP = R + P */
- i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
- while( i-- > 0 )
- {
- b = mbedtls_mpi_get_bit( m, i );
- /*
- * if (b) R = 2R + P else R = 2R,
- * which is:
- * if (b) double_add( RP, R, RP, R )
- * else double_add( R, RP, R, RP )
- * but using safe conditional swaps to avoid leaks
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
- MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
- }
- MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
- cleanup:
- mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
- return( ret );
- }
- #endif /* ECP_MONTGOMERY */
- /*
- * Restartable multiplication R = m * P
- */
- int mbedtls_ecp_mul_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_mpi *m, const mbedtls_ecp_point *P,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
- mbedtls_ecp_restart_ctx *rs_ctx )
- {
- int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
- #if defined(MBEDTLS_ECP_INTERNAL_ALT)
- char is_grp_capable = 0;
- #endif
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( R != NULL );
- ECP_VALIDATE_RET( m != NULL );
- ECP_VALIDATE_RET( P != NULL );
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- /* reset ops count for this call if top-level */
- if( rs_ctx != NULL && rs_ctx->depth++ == 0 )
- rs_ctx->ops_done = 0;
- #endif
- #if defined(MBEDTLS_ECP_INTERNAL_ALT)
- if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
- MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
- #endif /* MBEDTLS_ECP_INTERNAL_ALT */
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- /* skip argument check when restarting */
- if( rs_ctx == NULL || rs_ctx->rsm == NULL )
- #endif
- {
- /* check_privkey is free */
- MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_CHK );
- /* Common sanity checks */
- MBEDTLS_MPI_CHK( mbedtls_ecp_check_privkey( grp, m ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_check_pubkey( grp, P ) );
- }
- ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
- #if defined(ECP_MONTGOMERY)
- if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
- MBEDTLS_MPI_CHK( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
- #endif
- #if defined(ECP_SHORTWEIERSTRASS)
- if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
- MBEDTLS_MPI_CHK( ecp_mul_comb( grp, R, m, P, f_rng, p_rng, rs_ctx ) );
- #endif
- cleanup:
- #if defined(MBEDTLS_ECP_INTERNAL_ALT)
- if( is_grp_capable )
- mbedtls_internal_ecp_free( grp );
- #endif /* MBEDTLS_ECP_INTERNAL_ALT */
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL )
- rs_ctx->depth--;
- #endif
- return( ret );
- }
- /*
- * Multiplication R = m * P
- */
- int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_mpi *m, const mbedtls_ecp_point *P,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
- {
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( R != NULL );
- ECP_VALIDATE_RET( m != NULL );
- ECP_VALIDATE_RET( P != NULL );
- return( mbedtls_ecp_mul_restartable( grp, R, m, P, f_rng, p_rng, NULL ) );
- }
- #if defined(ECP_SHORTWEIERSTRASS)
- /*
- * Check that an affine point is valid as a public key,
- * short weierstrass curves (SEC1 3.2.3.1)
- */
- static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
- {
- int ret;
- mbedtls_mpi YY, RHS;
- /* pt coordinates must be normalized for our checks */
- if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
- mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
- mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
- mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
- /*
- * YY = Y^2
- * RHS = X (X^2 + A) + B = X^3 + A X + B
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY, &pt->Y, &pt->Y ) ); MOD_MUL( YY );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X, &pt->X ) ); MOD_MUL( RHS );
- /* Special case for A = -3 */
- if( grp->A.p == NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3 ) ); MOD_SUB( RHS );
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) ); MOD_ADD( RHS );
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS, &pt->X ) ); MOD_MUL( RHS );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->B ) ); MOD_ADD( RHS );
- if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
- ret = MBEDTLS_ERR_ECP_INVALID_KEY;
- cleanup:
- mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
- return( ret );
- }
- #endif /* ECP_SHORTWEIERSTRASS */
- /*
- * R = m * P with shortcuts for m == 1 and m == -1
- * NOT constant-time - ONLY for short Weierstrass!
- */
- static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
- mbedtls_ecp_point *R,
- const mbedtls_mpi *m,
- const mbedtls_ecp_point *P,
- mbedtls_ecp_restart_ctx *rs_ctx )
- {
- int ret;
- if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
- }
- else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
- if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul_restartable( grp, R, m, P,
- NULL, NULL, rs_ctx ) );
- }
- cleanup:
- return( ret );
- }
- /*
- * Restartable linear combination
- * NOT constant-time
- */
- int mbedtls_ecp_muladd_restartable(
- mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_mpi *m, const mbedtls_ecp_point *P,
- const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
- mbedtls_ecp_restart_ctx *rs_ctx )
- {
- int ret;
- mbedtls_ecp_point mP;
- mbedtls_ecp_point *pmP = &mP;
- mbedtls_ecp_point *pR = R;
- #if defined(MBEDTLS_ECP_INTERNAL_ALT)
- char is_grp_capable = 0;
- #endif
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( R != NULL );
- ECP_VALIDATE_RET( m != NULL );
- ECP_VALIDATE_RET( P != NULL );
- ECP_VALIDATE_RET( n != NULL );
- ECP_VALIDATE_RET( Q != NULL );
- if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
- return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
- mbedtls_ecp_point_init( &mP );
- ECP_RS_ENTER( ma );
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->ma != NULL )
- {
- /* redirect intermediate results to restart context */
- pmP = &rs_ctx->ma->mP;
- pR = &rs_ctx->ma->R;
- /* jump to next operation */
- if( rs_ctx->ma->state == ecp_rsma_mul2 )
- goto mul2;
- if( rs_ctx->ma->state == ecp_rsma_add )
- goto add;
- if( rs_ctx->ma->state == ecp_rsma_norm )
- goto norm;
- }
- #endif /* MBEDTLS_ECP_RESTARTABLE */
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pmP, m, P, rs_ctx ) );
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->ma != NULL )
- rs_ctx->ma->state = ecp_rsma_mul2;
- mul2:
- #endif
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, pR, n, Q, rs_ctx ) );
- #if defined(MBEDTLS_ECP_INTERNAL_ALT)
- if( ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp ) ) )
- MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );
- #endif /* MBEDTLS_ECP_INTERNAL_ALT */
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->ma != NULL )
- rs_ctx->ma->state = ecp_rsma_add;
- add:
- #endif
- MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_ADD );
- MBEDTLS_MPI_CHK( ecp_add_mixed( grp, pR, pmP, pR ) );
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->ma != NULL )
- rs_ctx->ma->state = ecp_rsma_norm;
- norm:
- #endif
- MBEDTLS_ECP_BUDGET( MBEDTLS_ECP_OPS_INV );
- MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, pR ) );
- #if defined(MBEDTLS_ECP_RESTARTABLE)
- if( rs_ctx != NULL && rs_ctx->ma != NULL )
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, pR ) );
- #endif
- cleanup:
- #if defined(MBEDTLS_ECP_INTERNAL_ALT)
- if( is_grp_capable )
- mbedtls_internal_ecp_free( grp );
- #endif /* MBEDTLS_ECP_INTERNAL_ALT */
- mbedtls_ecp_point_free( &mP );
- ECP_RS_LEAVE( ma );
- return( ret );
- }
- /*
- * Linear combination
- * NOT constant-time
- */
- int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_mpi *m, const mbedtls_ecp_point *P,
- const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
- {
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( R != NULL );
- ECP_VALIDATE_RET( m != NULL );
- ECP_VALIDATE_RET( P != NULL );
- ECP_VALIDATE_RET( n != NULL );
- ECP_VALIDATE_RET( Q != NULL );
- return( mbedtls_ecp_muladd_restartable( grp, R, m, P, n, Q, NULL ) );
- }
- #if defined(ECP_MONTGOMERY)
- /*
- * Check validity of a public key for Montgomery curves with x-only schemes
- */
- static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
- {
- /* [Curve25519 p. 5] Just check X is the correct number of bytes */
- /* Allow any public value, if it's too big then we'll just reduce it mod p
- * (RFC 7748 sec. 5 para. 3). */
- if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- return( 0 );
- }
- #endif /* ECP_MONTGOMERY */
- /*
- * Check that a point is valid as a public key
- */
- int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp,
- const mbedtls_ecp_point *pt )
- {
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( pt != NULL );
- /* Must use affine coordinates */
- if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- #if defined(ECP_MONTGOMERY)
- if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
- return( ecp_check_pubkey_mx( grp, pt ) );
- #endif
- #if defined(ECP_SHORTWEIERSTRASS)
- if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
- return( ecp_check_pubkey_sw( grp, pt ) );
- #endif
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- /*
- * Check that an mbedtls_mpi is valid as a private key
- */
- int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp,
- const mbedtls_mpi *d )
- {
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( d != NULL );
- #if defined(ECP_MONTGOMERY)
- if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
- {
- /* see RFC 7748 sec. 5 para. 5 */
- if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
- mbedtls_mpi_get_bit( d, 1 ) != 0 ||
- mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- /* see [Curve25519] page 5 */
- if( grp->nbits == 254 && mbedtls_mpi_get_bit( d, 2 ) != 0 )
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- return( 0 );
- }
- #endif /* ECP_MONTGOMERY */
- #if defined(ECP_SHORTWEIERSTRASS)
- if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
- {
- /* see SEC1 3.2 */
- if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
- mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- else
- return( 0 );
- }
- #endif /* ECP_SHORTWEIERSTRASS */
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- /*
- * Generate a private key
- */
- int mbedtls_ecp_gen_privkey( const mbedtls_ecp_group *grp,
- mbedtls_mpi *d,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
- size_t n_size;
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( d != NULL );
- ECP_VALIDATE_RET( f_rng != NULL );
- n_size = ( grp->nbits + 7 ) / 8;
- #if defined(ECP_MONTGOMERY)
- if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
- {
- /* [M225] page 5 */
- size_t b;
- do {
- MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
- } while( mbedtls_mpi_bitlen( d ) == 0);
- /* Make sure the most significant bit is nbits */
- b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
- if( b > grp->nbits )
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );
- else
- MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );
- /* Make sure the last two bits are unset for Curve448, three bits for
- Curve25519 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
- if( grp->nbits == 254 )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
- }
- }
- #endif /* ECP_MONTGOMERY */
- #if defined(ECP_SHORTWEIERSTRASS)
- if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
- {
- /* SEC1 3.2.1: Generate d such that 1 <= n < N */
- int count = 0;
- /*
- * Match the procedure given in RFC 6979 (deterministic ECDSA):
- * - use the same byte ordering;
- * - keep the leftmost nbits bits of the generated octet string;
- * - try until result is in the desired range.
- * This also avoids any biais, which is especially important for ECDSA.
- */
- do
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );
- /*
- * Each try has at worst a probability 1/2 of failing (the msb has
- * a probability 1/2 of being 0, and then the result will be < N),
- * so after 30 tries failure probability is a most 2**(-30).
- *
- * For most curves, 1 try is enough with overwhelming probability,
- * since N starts with a lot of 1s in binary, but some curves
- * such as secp224k1 are actually very close to the worst case.
- */
- if( ++count > 30 )
- return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
- }
- while( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
- mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 );
- }
- #endif /* ECP_SHORTWEIERSTRASS */
- cleanup:
- return( ret );
- }
- /*
- * Generate a keypair with configurable base point
- */
- int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
- const mbedtls_ecp_point *G,
- mbedtls_mpi *d, mbedtls_ecp_point *Q,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret;
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( d != NULL );
- ECP_VALIDATE_RET( G != NULL );
- ECP_VALIDATE_RET( Q != NULL );
- ECP_VALIDATE_RET( f_rng != NULL );
- MBEDTLS_MPI_CHK( mbedtls_ecp_gen_privkey( grp, d, f_rng, p_rng ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
- cleanup:
- return( ret );
- }
- /*
- * Generate key pair, wrapper for conventional base point
- */
- int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
- mbedtls_mpi *d, mbedtls_ecp_point *Q,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- ECP_VALIDATE_RET( grp != NULL );
- ECP_VALIDATE_RET( d != NULL );
- ECP_VALIDATE_RET( Q != NULL );
- ECP_VALIDATE_RET( f_rng != NULL );
- return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
- }
- /*
- * Generate a keypair, prettier wrapper
- */
- int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
- {
- int ret;
- ECP_VALIDATE_RET( key != NULL );
- ECP_VALIDATE_RET( f_rng != NULL );
- if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
- return( ret );
- return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
- }
- /*
- * Check a public-private key pair
- */
- int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
- {
- int ret;
- mbedtls_ecp_point Q;
- mbedtls_ecp_group grp;
- ECP_VALIDATE_RET( pub != NULL );
- ECP_VALIDATE_RET( prv != NULL );
- if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
- pub->grp.id != prv->grp.id ||
- mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
- mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
- mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
- {
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- mbedtls_ecp_point_init( &Q );
- mbedtls_ecp_group_init( &grp );
- /* mbedtls_ecp_mul() needs a non-const group... */
- mbedtls_ecp_group_copy( &grp, &prv->grp );
- /* Also checks d is valid */
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );
- if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
- mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
- mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
- {
- ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
- goto cleanup;
- }
- cleanup:
- mbedtls_ecp_point_free( &Q );
- mbedtls_ecp_group_free( &grp );
- return( ret );
- }
- #if defined(MBEDTLS_SELF_TEST)
- /*
- * Checkup routine
- */
- int mbedtls_ecp_self_test( int verbose )
- {
- int ret;
- size_t i;
- mbedtls_ecp_group grp;
- mbedtls_ecp_point R, P;
- mbedtls_mpi m;
- unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
- /* exponents especially adapted for secp192r1 */
- const char *exponents[] =
- {
- "000000000000000000000000000000000000000000000001", /* one */
- "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
- "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
- "400000000000000000000000000000000000000000000000", /* one and zeros */
- "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
- "555555555555555555555555555555555555555555555555", /* 101010... */
- };
- mbedtls_ecp_group_init( &grp );
- mbedtls_ecp_point_init( &R );
- mbedtls_ecp_point_init( &P );
- mbedtls_mpi_init( &m );
- /* Use secp192r1 if available, or any available curve */
- #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
- MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
- #else
- MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
- #endif
- if( verbose != 0 )
- mbedtls_printf( " ECP test #1 (constant op_count, base point G): " );
- /* Do a dummy multiplication first to trigger precomputation */
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
- add_count = 0;
- dbl_count = 0;
- mul_count = 0;
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
- for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
- {
- add_c_prev = add_count;
- dbl_c_prev = dbl_count;
- mul_c_prev = mul_count;
- add_count = 0;
- dbl_count = 0;
- mul_count = 0;
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
- if( add_count != add_c_prev ||
- dbl_count != dbl_c_prev ||
- mul_count != mul_c_prev )
- {
- if( verbose != 0 )
- mbedtls_printf( "failed (%u)\n", (unsigned int) i );
- ret = 1;
- goto cleanup;
- }
- }
- if( verbose != 0 )
- mbedtls_printf( "passed\n" );
- if( verbose != 0 )
- mbedtls_printf( " ECP test #2 (constant op_count, other point): " );
- /* We computed P = 2G last time, use it */
- add_count = 0;
- dbl_count = 0;
- mul_count = 0;
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
- for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
- {
- add_c_prev = add_count;
- dbl_c_prev = dbl_count;
- mul_c_prev = mul_count;
- add_count = 0;
- dbl_count = 0;
- mul_count = 0;
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
- if( add_count != add_c_prev ||
- dbl_count != dbl_c_prev ||
- mul_count != mul_c_prev )
- {
- if( verbose != 0 )
- mbedtls_printf( "failed (%u)\n", (unsigned int) i );
- ret = 1;
- goto cleanup;
- }
- }
- if( verbose != 0 )
- mbedtls_printf( "passed\n" );
- cleanup:
- if( ret < 0 && verbose != 0 )
- mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
- mbedtls_ecp_group_free( &grp );
- mbedtls_ecp_point_free( &R );
- mbedtls_ecp_point_free( &P );
- mbedtls_mpi_free( &m );
- if( verbose != 0 )
- mbedtls_printf( "\n" );
- return( ret );
- }
- #endif /* MBEDTLS_SELF_TEST */
- #endif /* !MBEDTLS_ECP_ALT */
- #endif /* MBEDTLS_ECP_C */
|