/**
******************************************************************************
* @file stm8l15x_dac.c
* @author MCD Application Team
* @version V1.6.1
* @date 30-September-2014
* @brief This file provides firmware functions to manage the following
* functionalities of the Digital-to-Analog Converter (DAC) peripheral:
* - DAC channels configuration: trigger, output buffer, data format
* - DMA management
* - Interrupts and flags management
*
* @verbatim
*
* ===================================================================
* DAC Peripheral features
* ===================================================================
* The device integrates two 12-bit Digital Analog Converters that can
* be used independently or simultaneously (dual mode):
* 1- DAC channel1 with DAC_OUT1 (PF0) as output
* 1- DAC channel2 with DAC_OUT2 (PF1) as output
*
* Digital to Analog conversion can be non-triggered using DAC_Trigger_None
* and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register using
* DAC_SetChannel1Data()/DAC_SetChannel2Data.
*
* Digital to Analog conversion can be triggered by:
* 1- External event: PE4 using DAC_Trigger_Ext.
* This pin (PE4) must be configured in input mode.
*
* 2- Timers TRGO: TIM4, TIM5
* (DAC_Trigger_T4_TRGO, DAC_Trigger_T5_TRGO)
* The timer TRGO event should be selected using TIMx_SelectOutputTrigger()
*
* 3- Software using DAC_Trigger_Software
*
* Each DAC channel integrates an output buffer that can be used to
* reduce the output impedance, and to drive external loads directly
* without having to add an external operational amplifier.
*
* Refer to the device datasheet for more details about output impedance
* value with and without output buffer.
*
* Both DAC channels can be used to generate
* 1- Noise wave using DAC_Wave_Noise
* 2- Triangle wave using DAC_Wave_Triangle
*
*
* The DAC data format can be:
* 1- 8-bit right alignment using DAC_Align_8b_R
* 2- 12-bit left alignment using DAC_Align_12b_L
* 3- 12-bit right alignment using DAC_Align_12b_R
*
* The analog output voltage on each DAC channel pin is determined
* by the following equation: DAC_OUTx = VREF+ * DOR / 4095
* with DOR is the Data Output Register
* VEF+ is the input voltage reference (refer to the device datasheet)
* e.g. To set DAC_OUT1 to 0.7V, use
* DAC_SetChannel1Data(DAC_Align_12b_R, 868);
* Assuming that VREF+ = 3.3, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V
*
* A DMA1 request can be generated when an external trigger (but not
* a software trigger) occurs if DMA1 requests are enabled using
* DAC_DMACmd()
* DMA1 requests are mapped as following:
* 1- DAC channel1 is mapped on DMA1 channel3 which must be already
* configured
* 2- DAC channel2 is mapped on DMA1 channel1 which must be already
* configured
*
* ===================================================================
* How to use this driver
* ===================================================================
* - DAC clock must be enabled to get write access to DAC registers using
* CLK_PeripheralClockConfig(CLK_Peripheral_DAC, ENABLE)
* - Configure DAC_OUTx (DAC_OUT1: PF0, DAC_OUT2: PF1) in analog mode.
* - Configure the DAC channel using DAC_Init()
* - Enable the DAC channel using DAC_Cmd()
*
* @endverbatim
*
******************************************************************************
* @attention
*
*
© COPYRIGHT 2014 STMicroelectronics
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm8l15x_dac.h"
/** @addtogroup STM8L15x_StdPeriph_Driver
* @{
*/
/** @defgroup DAC
* @brief DAC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup DAC_Private_Functions
* @{
*/
/** @defgroup DAC_Group1 DAC channels configuration
* @brief DAC channels configuration: trigger, output buffer, data format
*
@verbatim
===============================================================================
DAC channels configuration: trigger, output buffer, data format
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Deinitializes the DAC peripheral registers to their default reset values.
* @param None
* @retval None
*/
void DAC_DeInit(void)
{
/* Set Channel1 the Configuration registers to their reset values */
DAC->CH1CR1 = DAC_CR1_RESET_VALUE;
DAC->CH1CR2 = DAC_CR2_RESET_VALUE;
/* Set Channel2 the Configuration registers to their reset values */
DAC->CH2CR1 = DAC_CR1_RESET_VALUE;
DAC->CH2CR2 = DAC_CR2_RESET_VALUE;
/* Set the Software Trigger configuration registers to their reset values */
DAC->SWTRIGR = DAC_SWTRIGR_RESET_VALUE;
/* Set the Status registers to their reset values */
DAC->SR = (uint8_t)~DAC_SR_RESET_VALUE;
/* Set the Channel1 Data holding registers to their reset values */
DAC->CH1RDHRH = DAC_RDHRH_RESET_VALUE;
DAC->CH1RDHRL = DAC_RDHRL_RESET_VALUE;
DAC->CH1LDHRH = DAC_LDHRH_RESET_VALUE;
DAC->CH1LDHRL = DAC_LDHRL_RESET_VALUE;
DAC->CH1DHR8 = DAC_DHR8_RESET_VALUE;
/* Set the Channel2 Data holding registers to their reset values */
DAC->CH2RDHRH = DAC_RDHRH_RESET_VALUE;
DAC->CH2RDHRL = DAC_RDHRL_RESET_VALUE;
DAC->CH2LDHRH = DAC_LDHRH_RESET_VALUE;
DAC->CH2LDHRL = DAC_LDHRL_RESET_VALUE;
DAC->CH2DHR8 = DAC_DHR8_RESET_VALUE;
/* Set the Dual mode 12bit Right Data holding registers to their reset values */
DAC->DCH1RDHRH = DAC_RDHRH_RESET_VALUE;
DAC->DCH1RDHRL = DAC_RDHRL_RESET_VALUE;
DAC->DCH2RDHRH = DAC_RDHRH_RESET_VALUE;
DAC->DCH2RDHRL = DAC_RDHRL_RESET_VALUE;
/* Set the Dual mode 12bit Left Data holding registers to their reset values */
DAC->DCH1LDHRH = DAC_LDHRH_RESET_VALUE;
DAC->DCH1LDHRL = DAC_LDHRL_RESET_VALUE;
DAC->DCH2LDHRH = DAC_LDHRH_RESET_VALUE;
DAC->DCH2LDHRL = DAC_LDHRL_RESET_VALUE;
/* Set the Dual mode 8bit Data holding registers to their reset values */
DAC->DCH1DHR8 = DAC_DHR8_RESET_VALUE;
DAC->DCH2DHR8 = DAC_DHR8_RESET_VALUE;
}
/**
* @brief Initializes the DAC according to the specified parameters.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_Trigger : the selected DAC trigger.
* This parameter can be one of the following values:
* @arg DAC_Trigger_None: DAC trigger None
* @arg DAC_Trigger_T4_TRGO: DAC trigger TIM4 TRGO
* @arg DAC_Trigger_T5_TRGO: DAC trigger TIM5 TRGO
* @arg DAC_Trigger_Ext: DAC trigger External Trigger (PE4)
* @arg DAC_Trigger_Software: DAC trigger software
* @param DAC_OutputBuffer : the status of DAC load Buffer
* This parameter can be one of the following values:
* @arg DAC_OutputBuffer_Enable: DAC output buffer Enabled
* @arg DAC_OutputBuffer_Disable: DAC output buffer Disabled
* @retval None
*/
void DAC_Init(DAC_Channel_TypeDef DAC_Channel,
DAC_Trigger_TypeDef DAC_Trigger,
DAC_OutputBuffer_TypeDef DAC_OutputBuffer)
{
uint8_t tmpreg = 0;
uint16_t tmpreg2 = 0;
/* Check the DAC parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_TRIGGER(DAC_Trigger));
assert_param(IS_DAC_OUTPUT_BUFFER_STATE(DAC_OutputBuffer));
/* Get the DAC CHxCR1 value */
tmpreg2 = (uint16_t)((uint8_t)((uint8_t)DAC_Channel << 1));
tmpreg = *(uint8_t*)((uint16_t)(DAC_BASE + CR1_Offset + tmpreg2));
/* Clear BOFFx, TENx, TSELx bits */
tmpreg &= (uint8_t)~(DAC_CR1_BOFF | DAC_CR1_TEN | DAC_CR1_TSEL );
/* Set BOFFx bit according to DAC_OutputBuffer value */
tmpreg |= (uint8_t)(DAC_OutputBuffer);
/* Configure for the selected DAC channel trigger*/
if (DAC_Trigger != DAC_Trigger_None)
{
/* Set TSELx and TEN bits according to DAC_Trigger value */
tmpreg |= (uint8_t)(DAC_CR1_TEN | DAC_Trigger) ;
}
/* Write to DAC CHxCR1 */
*(uint8_t*)((uint16_t)(DAC_BASE + CR1_Offset + tmpreg2)) = (uint8_t)tmpreg;
}
/**
* @brief Enables or disables the specified DAC channel.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the DAC channel.
* This parameter can be: ENABLE or DISABLE.
* @note When the DAC channel is enabled the trigger source can no more
* be modified.
* @retval None
*/
void DAC_Cmd(DAC_Channel_TypeDef DAC_Channel, FunctionalState NewState)
{
uint16_t cr1addr = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Find CHxCR1 register Address */
cr1addr = DAC_BASE + CR1_Offset + (uint8_t)((uint8_t)DAC_Channel << 1);
if (NewState != DISABLE)
{
/* Enable the selected DAC channel */
(*(uint8_t*)(cr1addr)) |= DAC_CR1_EN;
}
else
{
/* Disable the selected DAC channel */
(*(uint8_t*)(cr1addr)) &= (uint8_t) ~(DAC_CR1_EN);
}
}
/**
* @brief Enables or disables the selected DAC channel software trigger.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the selected DAC channel software trigger.
* This parameter can be: ENABLE or DISABLE.
* @retval None.
*/
void DAC_SoftwareTriggerCmd(DAC_Channel_TypeDef DAC_Channel, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable software trigger for the selected DAC channel */
DAC->SWTRIGR |= (uint8_t)(DAC_SWTRIGR_SWTRIG1 << DAC_Channel);
}
else
{
/* Disable software trigger for the selected DAC channel */
DAC->SWTRIGR &= (uint8_t)~((uint8_t)(DAC_SWTRIGR_SWTRIG1 << DAC_Channel));
}
}
/**
* @brief Enables or disables simultaneously the two DAC channels software
* triggers.
* @param NewState: new state of the DAC channels software triggers.
* This parameter can be: ENABLE or DISABLE.
* @retval None.
*/
void DAC_DualSoftwareTriggerCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable software trigger for both DAC channels */
DAC->SWTRIGR |= (DAC_SWTRIGR_SWTRIG1 | DAC_SWTRIGR_SWTRIG2) ;
}
else
{
/* Disable software trigger for both DAC channels */
DAC->SWTRIGR &= (uint8_t)~(DAC_SWTRIGR_SWTRIG1 | DAC_SWTRIGR_SWTRIG2);
}
}
/**
* @brief Enables or disables the selected DAC channel wave generation.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_Wave: Specifies the wave type to enable or disable.
* This parameter can be one of the following values:
* @arg DAC_Wave_Noise: noise wave generation
* @arg DAC_Wave_Triangle: triangle wave generation
* @param NewState: new state of the selected DAC channel wave generation.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DAC_WaveGenerationCmd(DAC_Channel_TypeDef DAC_Channel,
DAC_Wave_TypeDef DAC_Wave,
FunctionalState NewState)
{
uint8_t tmpreg = 0;
/* Check the DAC parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_WAVE(DAC_Wave));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Get the DAC CHxCR1 value & Clear WAVEN bits */
tmpreg = (uint8_t)((*(uint8_t*)(uint16_t)(DAC_BASE + CR1_Offset + (uint8_t)((uint8_t)DAC_Channel << 1))) & (uint8_t)~(DAC_CR1_WAVEN));
if (NewState != DISABLE)
{
tmpreg |= (uint8_t)(DAC_Wave);
}
/* Write to DAC CHxCR1 */
(*(uint8_t*) (uint16_t)(DAC_BASE + CR1_Offset + (uint8_t)((uint8_t)DAC_Channel << 1))) = tmpreg;
}
/**
* @brief Select DAC Noise Wave Generation LFSR according to the specified parameters.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_LFSRUnmask : the selected unmasked bit.
* This parameter can be one of the following values:
* @arg DAC_LFSRUnmask_Bit0: Noise LFSR Unmask 1 LSB
* @arg DAC_LFSRUnmask_Bits1_0: Noise LFSR Unmask 2 LSB
* @arg DAC_LFSRUnmask_Bit2_0: Noise LFSR Unmask 3 LSB
* @arg DAC_LFSRUnmask_Bit3_0: Noise LFSR Unmask 4 LSB
* @arg DAC_LFSRUnmask_Bit4_0: Noise LFSR Unmask 5 LSB
* @arg DAC_LFSRUnmask_Bit5_0: Noise LFSR Unmask 6 LSB
* @arg DAC_LFSRUnmask_Bit6_0: Noise LFSR Unmask 7 LSB
* @arg DAC_LFSRUnmask_Bit7_0: Noise LFSR Unmask 8 LSB
* @arg DAC_LFSRUnmask_Bit8_0: Noise LFSR Unmask 9 LSB
* @arg DAC_LFSRUnmask_Bit9_0: Noise LFSR Unmask 10 LSB
* @arg DAC_LFSRUnmask_Bit10_0: Noise LFSR Unmask 11 LSB
* @arg DAC_LFSRUnmask_Bit11_0: Noise LFSR Unmask 12 LSB
* @retval None
*/
void DAC_SetNoiseWaveLFSR(DAC_Channel_TypeDef DAC_Channel, DAC_LFSRUnmask_TypeDef DAC_LFSRUnmask)
{
uint8_t tmpreg = 0;
uint16_t cr2addr = 0;
/* Check the DAC parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(DAC_LFSRUnmask));
/* Get the DAC CHxCR2 value & Clear MAMPx bits */
cr2addr = (uint16_t)(DAC_BASE + CR2_Offset + (uint8_t)((uint8_t)DAC_Channel << 1));
tmpreg = (uint8_t)((*(uint8_t*)(cr2addr)) & (uint8_t)~(DAC_CR2_MAMPx));
/* Write to DAC CHxCR2 */
(*(uint8_t*)(cr2addr)) = (uint8_t)( tmpreg | DAC_LFSRUnmask);
}
/**
* @brief Select DAC Triangle Wave Generation Amplitude according to the specified parameters.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_TriangleAmplitude : the selected Amplitude
* This parameter can be one of the following values:
* @arg DAC_TriangleAmplitude_1: Triangle Amplitude = Vref.(1/4096)
* @arg DAC_TriangleAmplitude_3: Triangle Amplitude = Vref.(3/4096)
* @arg DAC_TriangleAmplitude_7: Triangle Amplitude = Vref.(7/4096)
* @arg DAC_TriangleAmplitude_15: Triangle Amplitude = Vref.(15/4096)
* @arg DAC_TriangleAmplitude_31: Triangle Amplitude = Vref.(31/4096)
* @arg DAC_TriangleAmplitude_63: Triangle Amplitude = Vref.(63/4096)
* @arg DAC_TriangleAmplitude_127: Triangle Amplitude = Vref.(127/4096)
* @arg DAC_TriangleAmplitude_255: Triangle Amplitude = Vref.(255/4096)
* @arg DAC_TriangleAmplitude_511: Triangle Amplitude = Vref.(511/4096)
* @arg DAC_TriangleAmplitude_1023: Triangle Amplitude = Vref.(1023/4096)
* @arg DAC_TriangleAmplitude_2047: Triangle Amplitude = Vref.(2047/4096)
* @arg DAC_TriangleAmplitude_4095: Triangle Amplitude = Vref.(4095/4096)
* @retval None
*/
void DAC_SetTriangleWaveAmplitude(DAC_Channel_TypeDef DAC_Channel, DAC_TriangleAmplitude_TypeDef DAC_TriangleAmplitude)
{
uint8_t tmpreg = 0;
uint16_t cr2addr = 0;
/* Check the DAC parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(DAC_TriangleAmplitude));
/* Get the DAC CHxCR2 value & Clear MAMPx bits */
cr2addr = (uint16_t)(DAC_BASE + CR2_Offset + (uint8_t)((uint8_t)DAC_Channel << 1));
tmpreg = (uint8_t)((*(uint8_t*)(cr2addr)) & (uint8_t)~(DAC_CR2_MAMPx));
/* Write to DAC CHxCR2 */
(*(uint8_t*)(cr2addr)) = (uint8_t)( tmpreg | DAC_TriangleAmplitude);
}
/**
* @brief Set the specified data holding register value for DAC channel1.
* @param DAC_Align: Specifies the data alignment for DAC channel1.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignment selected
* @arg DAC_Align_12b_L: 12bit left data alignment selected
* @arg DAC_Align_12b_R: 12bit right data alignment selected
* @param Data : Data to be loaded in the selected data holding register.
* @retval None.
*/
void DAC_SetChannel1Data(DAC_Align_TypeDef DAC_Align, uint16_t DAC_Data)
{
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
if (DAC_Align != DAC_Align_8b_R)
{
/* Set the DAC channel1 selected data holding register */
*(uint8_t*)((uint16_t)(DAC_BASE + CH1RDHRH_Offset + DAC_Align )) = (uint8_t)(((uint16_t)DAC_Data) >> 8);
*(uint8_t*)((uint16_t)(DAC_BASE + CH1RDHRH_Offset + 1 + DAC_Align )) = (uint8_t)DAC_Data;
}
else
{
/* Check the parameter */
assert_param(IS_DAC_DATA_08R(DAC_Data));
/* Set the DAC channel1 selected data holding register */
DAC->CH1DHR8 = (uint8_t)(DAC_Data);
}
}
/**
* @brief Set the specified data holding register value for DAC channel2.
* @param DAC_Align: Specifies the data alignment for DAC channel2.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignment selected
* @arg DAC_Align_12b_L: 12bit left data alignment selected
* @arg DAC_Align_12b_R: 12bit right data alignment selected
* @param Data : Data to be loaded in the selected data holding register.
* @retval None.
*/
void DAC_SetChannel2Data(DAC_Align_TypeDef DAC_Align, uint16_t DAC_Data)
{
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
if (DAC_Align != DAC_Align_8b_R)
{
/* Set the DAC channel2 selected data holding register */
*(uint8_t*)((uint16_t)(DAC_BASE + CH2RDHRH_Offset + DAC_Align )) = (uint8_t)(((uint16_t)DAC_Data) >> 8);
*(uint8_t*)((uint16_t)(DAC_BASE + CH2RDHRH_Offset + 1 + DAC_Align )) = (uint8_t)DAC_Data;
}
else
{
/* Check the parameter */
assert_param(IS_DAC_DATA_08R(DAC_Data));
/* Set the DAC channel2 selected data holding register */
DAC->CH2DHR8 = (uint8_t)(DAC_Data);
}
}
/**
* @brief Set the specified data holding register value for dual channel DAC.
* @param DAC_Align: Specifies the data alignment for dual channel DAC.
* This parameter can be one of the following values:
* @arg DAC_Align_8b_R: 8bit right data alignment selected
* @arg DAC_Align_12b_L: 12bit left data alignment selected
* @arg DAC_Align_12b_R: 12bit right data alignment selected
* @param Data2: Data for DAC Channel2 to be loaded in the selected data
* holding register.
* @param Data1: Data for DAC Channel1 to be loaded in the selected data
* holding register.
* @note In dual mode, a unique register access is required to write in both
* DAC channels at the same time.
* @retval None.
*/
void DAC_SetDualChannelData(DAC_Align_TypeDef DAC_Align, uint16_t DAC_Data2, uint16_t DAC_Data1)
{
uint16_t dchxrdhrhaddr = 0;
/* Check the parameters */
assert_param(IS_DAC_ALIGN(DAC_Align));
if (DAC_Align != DAC_Align_8b_R)
{
/* Identify the DCHxRDHRH address*/
dchxrdhrhaddr = (uint16_t)(DAC_BASE + DCH1RDHRH_Offset + DAC_Align);
/* Set the DAC channels Dual data holding registers */
*(uint8_t*)(uint16_t)dchxrdhrhaddr = (uint8_t)(((uint16_t)DAC_Data1) >> 8);
*(uint8_t*)(uint16_t)(dchxrdhrhaddr + 1) = (uint8_t)DAC_Data1;
*(uint8_t*)(uint16_t)(dchxrdhrhaddr + 2) = (uint8_t)(((uint16_t)DAC_Data2) >> 8);
*(uint8_t*)(uint16_t)(dchxrdhrhaddr + 3) = (uint8_t)DAC_Data2;
}
else
{
/* Check the parameter */
assert_param(IS_DAC_DATA_08R(DAC_Data1 | DAC_Data2));
/* Set the DAC channels Dual data holding registers */
DAC->DCH1DHR8 = (uint8_t)(DAC_Data1);
DAC->DCH2DHR8 = (uint8_t)(DAC_Data2);
}
}
/**
* @brief Returns the last data output value of the selected DAC channel.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @retval The selected DAC channel data output value.
*/
uint16_t DAC_GetDataOutputValue(DAC_Channel_TypeDef DAC_Channel)
{
uint16_t outputdata = 0;
uint16_t tmp = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
if ( DAC_Channel == DAC_Channel_1)
{
/* Returns the DAC channel data output register value */
tmp = (uint16_t)((uint16_t)DAC->CH1DORH << 8);
outputdata = (uint16_t)(tmp | (DAC->CH1DORL));
}
else
{
/* Returns the DAC channel data output register value */
tmp = (uint16_t)((uint16_t)DAC->CH2DORH << 8);
outputdata = (uint16_t)(tmp | (DAC->CH2DORL));
}
/* return the selected DAC channel data output value.*/
return (uint16_t)outputdata;
}
/**
* @}
*/
/** @defgroup DAC_Group2 DMA management functions
* @brief DMA management functions
*
@verbatim
===============================================================================
DMA management function
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified DAC channel DMA request.
* When enabled DMA1 is generated when an external trigger occurs
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param NewState: new state of the selected DAC channel DMA request.
* This parameter can be: ENABLE or DISABLE.
* The DAC channel1 (channel2) is mapped on DMA1 channel3 (channel1) which
* must be already configured.
* @retval None
*/
void DAC_DMACmd(DAC_Channel_TypeDef DAC_Channel, FunctionalState NewState)
{
uint16_t cr2addr = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Find CHxCR2 register Address */
cr2addr = DAC_BASE + CR2_Offset + (uint8_t)((uint8_t)DAC_Channel << 1);
if (NewState != DISABLE)
{
/* Enable the selected DAC channel DMA request */
(*(uint8_t*)(cr2addr)) |= DAC_CR2_DMAEN;
}
else
{
/* Disable the selected DAC channel DMA request */
(*(uint8_t*)(cr2addr)) &= (uint8_t)~(DAC_CR2_DMAEN);
}
}
/**
* @}
*/
/** @defgroup DAC_Group3 Interrupts and flags management functions
* @brief Interrupts and flags management functions
*
@verbatim
===============================================================================
Interrupts and flags management functions
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified DAC interrupts.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_IT: specifies the DAC interrupt sources to be enabled or disabled.
* This parameter can be the following values:
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
* @note The DMA underrun occurs when a second external trigger arrives before
* the acknowledgement for the first external trigger is received (first request).
* @param NewState: new state of the specified DAC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void DAC_ITConfig(DAC_Channel_TypeDef DAC_Channel, DAC_IT_TypeDef DAC_IT, FunctionalState NewState)
{
uint16_t cr2addr = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_DAC_IT(DAC_IT));
/* Find CHxCR2 register Address */
cr2addr = DAC_BASE + CR2_Offset + (uint8_t)((uint8_t)DAC_Channel << 1);
if (NewState != DISABLE)
{
/* Enable the selected DAC interrupts */
(*(uint8_t*)(cr2addr)) |= (uint8_t)(DAC_IT);
}
else
{
/* Disable the selected DAC interrupts */
(*(uint8_t*)(cr2addr)) &= (uint8_t)(~(DAC_IT));
}
}
/**
* @brief Checks whether the specified DAC flag is set or not.
* @param DAC_Channel: thee selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_FLAG: specifies the flag to check.
* This parameter can be only of the following value:
* @arg DAC_FLAG_DMAUDR: DMA underrun flag
* @note The DMA underrun occurs when a second external trigger arrives before
* the acknowledgement for the first external trigger is received (first request).
* @retval The new state of DAC_FLAG (SET or RESET).
*/
FlagStatus DAC_GetFlagStatus(DAC_Channel_TypeDef DAC_Channel, DAC_FLAG_TypeDef DAC_FLAG)
{
FlagStatus flagstatus = RESET;
uint8_t flag = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_FLAG(DAC_FLAG));
flag = (uint8_t)(DAC_FLAG << DAC_Channel);
/* Check the status of the specified DAC flag */
if ((DAC->SR & flag ) != (uint8_t)RESET)
{
/* DAC FLAG is set */
flagstatus = SET;
}
else
{
/* DAC FLAG is reset */
flagstatus = RESET;
}
/* Return the DAC FLAG status */
return flagstatus;
}
/**
* @brief Clears the DAC channel's pending flags.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_FLAG: specifies the flag to clear.
* This parameter can be of the following value:
* @arg DAC_FLAG_DMAUDR: DMA underrun flag
* @retval None
*/
void DAC_ClearFlag(DAC_Channel_TypeDef DAC_Channel, DAC_FLAG_TypeDef DAC_FLAG)
{
uint8_t flag = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_FLAG(DAC_FLAG));
/* identify the selected flag*/
flag = (uint8_t)(DAC_FLAG << DAC_Channel);
/* Clear the selected DAC flag */
DAC->SR = (uint8_t)(~flag);
}
/**
* @brief Checks whether the specified DAC interrupt has occurred or not.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_IT: specifies the DAC interrupt source to check.
* This parameter can be the following values:
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
* @note The DMA underrun occurs when a second external trigger arrives before
* the acknowledgement for the first external trigger is received (first request).
* @retval The new state of DAC_IT (SET or RESET).
*/
ITStatus DAC_GetITStatus(DAC_Channel_TypeDef DAC_Channel, DAC_IT_TypeDef DAC_IT)
{
ITStatus itstatus = RESET;
uint8_t enablestatus = 0;
uint8_t flagstatus = 0;
uint8_t tempreg = 0;
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_IT(DAC_IT));
/* identify the status of the IT and its correspondent flag*/
tempreg = *(uint8_t*)(uint16_t)(DAC_BASE + CR2_Offset + (uint8_t)((uint8_t)DAC_Channel << 2));
enablestatus = (uint8_t)( tempreg & (uint8_t)((uint8_t)DAC_IT << DAC_Channel));
flagstatus = (uint8_t)(DAC->SR & (uint8_t)(DAC_IT >> ((uint8_t)0x05 - DAC_Channel)));
/* Check the status of the specified DAC interrupt */
if (((flagstatus) != (uint8_t)RESET) && enablestatus)
{
/* DAC IT is set */
itstatus = SET;
}
else
{
/* DAC IT is reset */
itstatus = RESET;
}
/* Return the DAC IT status */
return itstatus;
}
/**
* @brief Clears the DAC channel's interrupt pending bits.
* @param DAC_Channel: the selected DAC channel.
* This parameter can be one of the following values:
* @arg DAC_Channel_1: DAC Channel1 selected
* @arg DAC_Channel_2: DAC Channel2 selected
* @param DAC_IT: specifies the DAC interrupt pending bit to clear.
* This parameter can be the following values:
* @arg DAC_IT_DMAUDR: DMA underrun interrupt mask
* @retval None
*/
void DAC_ClearITPendingBit(DAC_Channel_TypeDef DAC_Channel, DAC_IT_TypeDef DAC_IT)
{
/* Check the parameters */
assert_param(IS_DAC_CHANNEL(DAC_Channel));
assert_param(IS_DAC_IT(DAC_IT));
/* Clear the selected DAC interrupt pending bits */
DAC->SR = (uint8_t)~(uint8_t)((uint8_t)DAC_IT >> (0x05 - DAC_Channel));
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/