/** ****************************************************************************** * @file stm8l15x_dac.c * @author MCD Application Team * @version V1.6.1 * @date 30-September-2014 * @brief This file provides firmware functions to manage the following * functionalities of the Digital-to-Analog Converter (DAC) peripheral: * - DAC channels configuration: trigger, output buffer, data format * - DMA management * - Interrupts and flags management * * @verbatim * * =================================================================== * DAC Peripheral features * =================================================================== * The device integrates two 12-bit Digital Analog Converters that can * be used independently or simultaneously (dual mode): * 1- DAC channel1 with DAC_OUT1 (PF0) as output * 1- DAC channel2 with DAC_OUT2 (PF1) as output * * Digital to Analog conversion can be non-triggered using DAC_Trigger_None * and DAC_OUT1/DAC_OUT2 is available once writing to DHRx register using * DAC_SetChannel1Data()/DAC_SetChannel2Data. * * Digital to Analog conversion can be triggered by: * 1- External event: PE4 using DAC_Trigger_Ext. * This pin (PE4) must be configured in input mode. * * 2- Timers TRGO: TIM4, TIM5 * (DAC_Trigger_T4_TRGO, DAC_Trigger_T5_TRGO) * The timer TRGO event should be selected using TIMx_SelectOutputTrigger() * * 3- Software using DAC_Trigger_Software * * Each DAC channel integrates an output buffer that can be used to * reduce the output impedance, and to drive external loads directly * without having to add an external operational amplifier. * * Refer to the device datasheet for more details about output impedance * value with and without output buffer. * * Both DAC channels can be used to generate * 1- Noise wave using DAC_Wave_Noise * 2- Triangle wave using DAC_Wave_Triangle * * * The DAC data format can be: * 1- 8-bit right alignment using DAC_Align_8b_R * 2- 12-bit left alignment using DAC_Align_12b_L * 3- 12-bit right alignment using DAC_Align_12b_R * * The analog output voltage on each DAC channel pin is determined * by the following equation: DAC_OUTx = VREF+ * DOR / 4095 * with DOR is the Data Output Register * VEF+ is the input voltage reference (refer to the device datasheet) * e.g. To set DAC_OUT1 to 0.7V, use * DAC_SetChannel1Data(DAC_Align_12b_R, 868); * Assuming that VREF+ = 3.3, DAC_OUT1 = (3.3 * 868) / 4095 = 0.7V * * A DMA1 request can be generated when an external trigger (but not * a software trigger) occurs if DMA1 requests are enabled using * DAC_DMACmd() * DMA1 requests are mapped as following: * 1- DAC channel1 is mapped on DMA1 channel3 which must be already * configured * 2- DAC channel2 is mapped on DMA1 channel1 which must be already * configured * * =================================================================== * How to use this driver * =================================================================== * - DAC clock must be enabled to get write access to DAC registers using * CLK_PeripheralClockConfig(CLK_Peripheral_DAC, ENABLE) * - Configure DAC_OUTx (DAC_OUT1: PF0, DAC_OUT2: PF1) in analog mode. * - Configure the DAC channel using DAC_Init() * - Enable the DAC channel using DAC_Cmd() * * @endverbatim * ****************************************************************************** * @attention * *

© COPYRIGHT 2014 STMicroelectronics

* * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License"); * You may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.st.com/software_license_agreement_liberty_v2 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm8l15x_dac.h" /** @addtogroup STM8L15x_StdPeriph_Driver * @{ */ /** @defgroup DAC * @brief DAC driver modules * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /** @defgroup DAC_Private_Functions * @{ */ /** @defgroup DAC_Group1 DAC channels configuration * @brief DAC channels configuration: trigger, output buffer, data format * @verbatim =============================================================================== DAC channels configuration: trigger, output buffer, data format =============================================================================== @endverbatim * @{ */ /** * @brief Deinitializes the DAC peripheral registers to their default reset values. * @param None * @retval None */ void DAC_DeInit(void) { /* Set Channel1 the Configuration registers to their reset values */ DAC->CH1CR1 = DAC_CR1_RESET_VALUE; DAC->CH1CR2 = DAC_CR2_RESET_VALUE; /* Set Channel2 the Configuration registers to their reset values */ DAC->CH2CR1 = DAC_CR1_RESET_VALUE; DAC->CH2CR2 = DAC_CR2_RESET_VALUE; /* Set the Software Trigger configuration registers to their reset values */ DAC->SWTRIGR = DAC_SWTRIGR_RESET_VALUE; /* Set the Status registers to their reset values */ DAC->SR = (uint8_t)~DAC_SR_RESET_VALUE; /* Set the Channel1 Data holding registers to their reset values */ DAC->CH1RDHRH = DAC_RDHRH_RESET_VALUE; DAC->CH1RDHRL = DAC_RDHRL_RESET_VALUE; DAC->CH1LDHRH = DAC_LDHRH_RESET_VALUE; DAC->CH1LDHRL = DAC_LDHRL_RESET_VALUE; DAC->CH1DHR8 = DAC_DHR8_RESET_VALUE; /* Set the Channel2 Data holding registers to their reset values */ DAC->CH2RDHRH = DAC_RDHRH_RESET_VALUE; DAC->CH2RDHRL = DAC_RDHRL_RESET_VALUE; DAC->CH2LDHRH = DAC_LDHRH_RESET_VALUE; DAC->CH2LDHRL = DAC_LDHRL_RESET_VALUE; DAC->CH2DHR8 = DAC_DHR8_RESET_VALUE; /* Set the Dual mode 12bit Right Data holding registers to their reset values */ DAC->DCH1RDHRH = DAC_RDHRH_RESET_VALUE; DAC->DCH1RDHRL = DAC_RDHRL_RESET_VALUE; DAC->DCH2RDHRH = DAC_RDHRH_RESET_VALUE; DAC->DCH2RDHRL = DAC_RDHRL_RESET_VALUE; /* Set the Dual mode 12bit Left Data holding registers to their reset values */ DAC->DCH1LDHRH = DAC_LDHRH_RESET_VALUE; DAC->DCH1LDHRL = DAC_LDHRL_RESET_VALUE; DAC->DCH2LDHRH = DAC_LDHRH_RESET_VALUE; DAC->DCH2LDHRL = DAC_LDHRL_RESET_VALUE; /* Set the Dual mode 8bit Data holding registers to their reset values */ DAC->DCH1DHR8 = DAC_DHR8_RESET_VALUE; DAC->DCH2DHR8 = DAC_DHR8_RESET_VALUE; } /** * @brief Initializes the DAC according to the specified parameters. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param DAC_Trigger : the selected DAC trigger. * This parameter can be one of the following values: * @arg DAC_Trigger_None: DAC trigger None * @arg DAC_Trigger_T4_TRGO: DAC trigger TIM4 TRGO * @arg DAC_Trigger_T5_TRGO: DAC trigger TIM5 TRGO * @arg DAC_Trigger_Ext: DAC trigger External Trigger (PE4) * @arg DAC_Trigger_Software: DAC trigger software * @param DAC_OutputBuffer : the status of DAC load Buffer * This parameter can be one of the following values: * @arg DAC_OutputBuffer_Enable: DAC output buffer Enabled * @arg DAC_OutputBuffer_Disable: DAC output buffer Disabled * @retval None */ void DAC_Init(DAC_Channel_TypeDef DAC_Channel, DAC_Trigger_TypeDef DAC_Trigger, DAC_OutputBuffer_TypeDef DAC_OutputBuffer) { uint8_t tmpreg = 0; uint16_t tmpreg2 = 0; /* Check the DAC parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_DAC_TRIGGER(DAC_Trigger)); assert_param(IS_DAC_OUTPUT_BUFFER_STATE(DAC_OutputBuffer)); /* Get the DAC CHxCR1 value */ tmpreg2 = (uint16_t)((uint8_t)((uint8_t)DAC_Channel << 1)); tmpreg = *(uint8_t*)((uint16_t)(DAC_BASE + CR1_Offset + tmpreg2)); /* Clear BOFFx, TENx, TSELx bits */ tmpreg &= (uint8_t)~(DAC_CR1_BOFF | DAC_CR1_TEN | DAC_CR1_TSEL ); /* Set BOFFx bit according to DAC_OutputBuffer value */ tmpreg |= (uint8_t)(DAC_OutputBuffer); /* Configure for the selected DAC channel trigger*/ if (DAC_Trigger != DAC_Trigger_None) { /* Set TSELx and TEN bits according to DAC_Trigger value */ tmpreg |= (uint8_t)(DAC_CR1_TEN | DAC_Trigger) ; } /* Write to DAC CHxCR1 */ *(uint8_t*)((uint16_t)(DAC_BASE + CR1_Offset + tmpreg2)) = (uint8_t)tmpreg; } /** * @brief Enables or disables the specified DAC channel. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param NewState: new state of the DAC channel. * This parameter can be: ENABLE or DISABLE. * @note When the DAC channel is enabled the trigger source can no more * be modified. * @retval None */ void DAC_Cmd(DAC_Channel_TypeDef DAC_Channel, FunctionalState NewState) { uint16_t cr1addr = 0; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_FUNCTIONAL_STATE(NewState)); /* Find CHxCR1 register Address */ cr1addr = DAC_BASE + CR1_Offset + (uint8_t)((uint8_t)DAC_Channel << 1); if (NewState != DISABLE) { /* Enable the selected DAC channel */ (*(uint8_t*)(cr1addr)) |= DAC_CR1_EN; } else { /* Disable the selected DAC channel */ (*(uint8_t*)(cr1addr)) &= (uint8_t) ~(DAC_CR1_EN); } } /** * @brief Enables or disables the selected DAC channel software trigger. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param NewState: new state of the selected DAC channel software trigger. * This parameter can be: ENABLE or DISABLE. * @retval None. */ void DAC_SoftwareTriggerCmd(DAC_Channel_TypeDef DAC_Channel, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable software trigger for the selected DAC channel */ DAC->SWTRIGR |= (uint8_t)(DAC_SWTRIGR_SWTRIG1 << DAC_Channel); } else { /* Disable software trigger for the selected DAC channel */ DAC->SWTRIGR &= (uint8_t)~((uint8_t)(DAC_SWTRIGR_SWTRIG1 << DAC_Channel)); } } /** * @brief Enables or disables simultaneously the two DAC channels software * triggers. * @param NewState: new state of the DAC channels software triggers. * This parameter can be: ENABLE or DISABLE. * @retval None. */ void DAC_DualSoftwareTriggerCmd(FunctionalState NewState) { /* Check the parameters */ assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable software trigger for both DAC channels */ DAC->SWTRIGR |= (DAC_SWTRIGR_SWTRIG1 | DAC_SWTRIGR_SWTRIG2) ; } else { /* Disable software trigger for both DAC channels */ DAC->SWTRIGR &= (uint8_t)~(DAC_SWTRIGR_SWTRIG1 | DAC_SWTRIGR_SWTRIG2); } } /** * @brief Enables or disables the selected DAC channel wave generation. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param DAC_Wave: Specifies the wave type to enable or disable. * This parameter can be one of the following values: * @arg DAC_Wave_Noise: noise wave generation * @arg DAC_Wave_Triangle: triangle wave generation * @param NewState: new state of the selected DAC channel wave generation. * This parameter can be: ENABLE or DISABLE. * @retval None */ void DAC_WaveGenerationCmd(DAC_Channel_TypeDef DAC_Channel, DAC_Wave_TypeDef DAC_Wave, FunctionalState NewState) { uint8_t tmpreg = 0; /* Check the DAC parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_DAC_WAVE(DAC_Wave)); assert_param(IS_FUNCTIONAL_STATE(NewState)); /* Get the DAC CHxCR1 value & Clear WAVEN bits */ tmpreg = (uint8_t)((*(uint8_t*)(uint16_t)(DAC_BASE + CR1_Offset + (uint8_t)((uint8_t)DAC_Channel << 1))) & (uint8_t)~(DAC_CR1_WAVEN)); if (NewState != DISABLE) { tmpreg |= (uint8_t)(DAC_Wave); } /* Write to DAC CHxCR1 */ (*(uint8_t*) (uint16_t)(DAC_BASE + CR1_Offset + (uint8_t)((uint8_t)DAC_Channel << 1))) = tmpreg; } /** * @brief Select DAC Noise Wave Generation LFSR according to the specified parameters. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param DAC_LFSRUnmask : the selected unmasked bit. * This parameter can be one of the following values: * @arg DAC_LFSRUnmask_Bit0: Noise LFSR Unmask 1 LSB * @arg DAC_LFSRUnmask_Bits1_0: Noise LFSR Unmask 2 LSB * @arg DAC_LFSRUnmask_Bit2_0: Noise LFSR Unmask 3 LSB * @arg DAC_LFSRUnmask_Bit3_0: Noise LFSR Unmask 4 LSB * @arg DAC_LFSRUnmask_Bit4_0: Noise LFSR Unmask 5 LSB * @arg DAC_LFSRUnmask_Bit5_0: Noise LFSR Unmask 6 LSB * @arg DAC_LFSRUnmask_Bit6_0: Noise LFSR Unmask 7 LSB * @arg DAC_LFSRUnmask_Bit7_0: Noise LFSR Unmask 8 LSB * @arg DAC_LFSRUnmask_Bit8_0: Noise LFSR Unmask 9 LSB * @arg DAC_LFSRUnmask_Bit9_0: Noise LFSR Unmask 10 LSB * @arg DAC_LFSRUnmask_Bit10_0: Noise LFSR Unmask 11 LSB * @arg DAC_LFSRUnmask_Bit11_0: Noise LFSR Unmask 12 LSB * @retval None */ void DAC_SetNoiseWaveLFSR(DAC_Channel_TypeDef DAC_Channel, DAC_LFSRUnmask_TypeDef DAC_LFSRUnmask) { uint8_t tmpreg = 0; uint16_t cr2addr = 0; /* Check the DAC parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(DAC_LFSRUnmask)); /* Get the DAC CHxCR2 value & Clear MAMPx bits */ cr2addr = (uint16_t)(DAC_BASE + CR2_Offset + (uint8_t)((uint8_t)DAC_Channel << 1)); tmpreg = (uint8_t)((*(uint8_t*)(cr2addr)) & (uint8_t)~(DAC_CR2_MAMPx)); /* Write to DAC CHxCR2 */ (*(uint8_t*)(cr2addr)) = (uint8_t)( tmpreg | DAC_LFSRUnmask); } /** * @brief Select DAC Triangle Wave Generation Amplitude according to the specified parameters. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param DAC_TriangleAmplitude : the selected Amplitude * This parameter can be one of the following values: * @arg DAC_TriangleAmplitude_1: Triangle Amplitude = Vref.(1/4096) * @arg DAC_TriangleAmplitude_3: Triangle Amplitude = Vref.(3/4096) * @arg DAC_TriangleAmplitude_7: Triangle Amplitude = Vref.(7/4096) * @arg DAC_TriangleAmplitude_15: Triangle Amplitude = Vref.(15/4096) * @arg DAC_TriangleAmplitude_31: Triangle Amplitude = Vref.(31/4096) * @arg DAC_TriangleAmplitude_63: Triangle Amplitude = Vref.(63/4096) * @arg DAC_TriangleAmplitude_127: Triangle Amplitude = Vref.(127/4096) * @arg DAC_TriangleAmplitude_255: Triangle Amplitude = Vref.(255/4096) * @arg DAC_TriangleAmplitude_511: Triangle Amplitude = Vref.(511/4096) * @arg DAC_TriangleAmplitude_1023: Triangle Amplitude = Vref.(1023/4096) * @arg DAC_TriangleAmplitude_2047: Triangle Amplitude = Vref.(2047/4096) * @arg DAC_TriangleAmplitude_4095: Triangle Amplitude = Vref.(4095/4096) * @retval None */ void DAC_SetTriangleWaveAmplitude(DAC_Channel_TypeDef DAC_Channel, DAC_TriangleAmplitude_TypeDef DAC_TriangleAmplitude) { uint8_t tmpreg = 0; uint16_t cr2addr = 0; /* Check the DAC parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_DAC_LFSR_UNMASK_TRIANGLE_AMPLITUDE(DAC_TriangleAmplitude)); /* Get the DAC CHxCR2 value & Clear MAMPx bits */ cr2addr = (uint16_t)(DAC_BASE + CR2_Offset + (uint8_t)((uint8_t)DAC_Channel << 1)); tmpreg = (uint8_t)((*(uint8_t*)(cr2addr)) & (uint8_t)~(DAC_CR2_MAMPx)); /* Write to DAC CHxCR2 */ (*(uint8_t*)(cr2addr)) = (uint8_t)( tmpreg | DAC_TriangleAmplitude); } /** * @brief Set the specified data holding register value for DAC channel1. * @param DAC_Align: Specifies the data alignment for DAC channel1. * This parameter can be one of the following values: * @arg DAC_Align_8b_R: 8bit right data alignment selected * @arg DAC_Align_12b_L: 12bit left data alignment selected * @arg DAC_Align_12b_R: 12bit right data alignment selected * @param Data : Data to be loaded in the selected data holding register. * @retval None. */ void DAC_SetChannel1Data(DAC_Align_TypeDef DAC_Align, uint16_t DAC_Data) { /* Check the parameters */ assert_param(IS_DAC_ALIGN(DAC_Align)); if (DAC_Align != DAC_Align_8b_R) { /* Set the DAC channel1 selected data holding register */ *(uint8_t*)((uint16_t)(DAC_BASE + CH1RDHRH_Offset + DAC_Align )) = (uint8_t)(((uint16_t)DAC_Data) >> 8); *(uint8_t*)((uint16_t)(DAC_BASE + CH1RDHRH_Offset + 1 + DAC_Align )) = (uint8_t)DAC_Data; } else { /* Check the parameter */ assert_param(IS_DAC_DATA_08R(DAC_Data)); /* Set the DAC channel1 selected data holding register */ DAC->CH1DHR8 = (uint8_t)(DAC_Data); } } /** * @brief Set the specified data holding register value for DAC channel2. * @param DAC_Align: Specifies the data alignment for DAC channel2. * This parameter can be one of the following values: * @arg DAC_Align_8b_R: 8bit right data alignment selected * @arg DAC_Align_12b_L: 12bit left data alignment selected * @arg DAC_Align_12b_R: 12bit right data alignment selected * @param Data : Data to be loaded in the selected data holding register. * @retval None. */ void DAC_SetChannel2Data(DAC_Align_TypeDef DAC_Align, uint16_t DAC_Data) { /* Check the parameters */ assert_param(IS_DAC_ALIGN(DAC_Align)); if (DAC_Align != DAC_Align_8b_R) { /* Set the DAC channel2 selected data holding register */ *(uint8_t*)((uint16_t)(DAC_BASE + CH2RDHRH_Offset + DAC_Align )) = (uint8_t)(((uint16_t)DAC_Data) >> 8); *(uint8_t*)((uint16_t)(DAC_BASE + CH2RDHRH_Offset + 1 + DAC_Align )) = (uint8_t)DAC_Data; } else { /* Check the parameter */ assert_param(IS_DAC_DATA_08R(DAC_Data)); /* Set the DAC channel2 selected data holding register */ DAC->CH2DHR8 = (uint8_t)(DAC_Data); } } /** * @brief Set the specified data holding register value for dual channel DAC. * @param DAC_Align: Specifies the data alignment for dual channel DAC. * This parameter can be one of the following values: * @arg DAC_Align_8b_R: 8bit right data alignment selected * @arg DAC_Align_12b_L: 12bit left data alignment selected * @arg DAC_Align_12b_R: 12bit right data alignment selected * @param Data2: Data for DAC Channel2 to be loaded in the selected data * holding register. * @param Data1: Data for DAC Channel1 to be loaded in the selected data * holding register. * @note In dual mode, a unique register access is required to write in both * DAC channels at the same time. * @retval None. */ void DAC_SetDualChannelData(DAC_Align_TypeDef DAC_Align, uint16_t DAC_Data2, uint16_t DAC_Data1) { uint16_t dchxrdhrhaddr = 0; /* Check the parameters */ assert_param(IS_DAC_ALIGN(DAC_Align)); if (DAC_Align != DAC_Align_8b_R) { /* Identify the DCHxRDHRH address*/ dchxrdhrhaddr = (uint16_t)(DAC_BASE + DCH1RDHRH_Offset + DAC_Align); /* Set the DAC channels Dual data holding registers */ *(uint8_t*)(uint16_t)dchxrdhrhaddr = (uint8_t)(((uint16_t)DAC_Data1) >> 8); *(uint8_t*)(uint16_t)(dchxrdhrhaddr + 1) = (uint8_t)DAC_Data1; *(uint8_t*)(uint16_t)(dchxrdhrhaddr + 2) = (uint8_t)(((uint16_t)DAC_Data2) >> 8); *(uint8_t*)(uint16_t)(dchxrdhrhaddr + 3) = (uint8_t)DAC_Data2; } else { /* Check the parameter */ assert_param(IS_DAC_DATA_08R(DAC_Data1 | DAC_Data2)); /* Set the DAC channels Dual data holding registers */ DAC->DCH1DHR8 = (uint8_t)(DAC_Data1); DAC->DCH2DHR8 = (uint8_t)(DAC_Data2); } } /** * @brief Returns the last data output value of the selected DAC channel. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @retval The selected DAC channel data output value. */ uint16_t DAC_GetDataOutputValue(DAC_Channel_TypeDef DAC_Channel) { uint16_t outputdata = 0; uint16_t tmp = 0; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); if ( DAC_Channel == DAC_Channel_1) { /* Returns the DAC channel data output register value */ tmp = (uint16_t)((uint16_t)DAC->CH1DORH << 8); outputdata = (uint16_t)(tmp | (DAC->CH1DORL)); } else { /* Returns the DAC channel data output register value */ tmp = (uint16_t)((uint16_t)DAC->CH2DORH << 8); outputdata = (uint16_t)(tmp | (DAC->CH2DORL)); } /* return the selected DAC channel data output value.*/ return (uint16_t)outputdata; } /** * @} */ /** @defgroup DAC_Group2 DMA management functions * @brief DMA management functions * @verbatim =============================================================================== DMA management function =============================================================================== @endverbatim * @{ */ /** * @brief Enables or disables the specified DAC channel DMA request. * When enabled DMA1 is generated when an external trigger occurs * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param NewState: new state of the selected DAC channel DMA request. * This parameter can be: ENABLE or DISABLE. * The DAC channel1 (channel2) is mapped on DMA1 channel3 (channel1) which * must be already configured. * @retval None */ void DAC_DMACmd(DAC_Channel_TypeDef DAC_Channel, FunctionalState NewState) { uint16_t cr2addr = 0; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_FUNCTIONAL_STATE(NewState)); /* Find CHxCR2 register Address */ cr2addr = DAC_BASE + CR2_Offset + (uint8_t)((uint8_t)DAC_Channel << 1); if (NewState != DISABLE) { /* Enable the selected DAC channel DMA request */ (*(uint8_t*)(cr2addr)) |= DAC_CR2_DMAEN; } else { /* Disable the selected DAC channel DMA request */ (*(uint8_t*)(cr2addr)) &= (uint8_t)~(DAC_CR2_DMAEN); } } /** * @} */ /** @defgroup DAC_Group3 Interrupts and flags management functions * @brief Interrupts and flags management functions * @verbatim =============================================================================== Interrupts and flags management functions =============================================================================== @endverbatim * @{ */ /** * @brief Enables or disables the specified DAC interrupts. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param DAC_IT: specifies the DAC interrupt sources to be enabled or disabled. * This parameter can be the following values: * @arg DAC_IT_DMAUDR: DMA underrun interrupt mask * @note The DMA underrun occurs when a second external trigger arrives before * the acknowledgement for the first external trigger is received (first request). * @param NewState: new state of the specified DAC interrupts. * This parameter can be: ENABLE or DISABLE. * @retval None */ void DAC_ITConfig(DAC_Channel_TypeDef DAC_Channel, DAC_IT_TypeDef DAC_IT, FunctionalState NewState) { uint16_t cr2addr = 0; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_FUNCTIONAL_STATE(NewState)); assert_param(IS_DAC_IT(DAC_IT)); /* Find CHxCR2 register Address */ cr2addr = DAC_BASE + CR2_Offset + (uint8_t)((uint8_t)DAC_Channel << 1); if (NewState != DISABLE) { /* Enable the selected DAC interrupts */ (*(uint8_t*)(cr2addr)) |= (uint8_t)(DAC_IT); } else { /* Disable the selected DAC interrupts */ (*(uint8_t*)(cr2addr)) &= (uint8_t)(~(DAC_IT)); } } /** * @brief Checks whether the specified DAC flag is set or not. * @param DAC_Channel: thee selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param DAC_FLAG: specifies the flag to check. * This parameter can be only of the following value: * @arg DAC_FLAG_DMAUDR: DMA underrun flag * @note The DMA underrun occurs when a second external trigger arrives before * the acknowledgement for the first external trigger is received (first request). * @retval The new state of DAC_FLAG (SET or RESET). */ FlagStatus DAC_GetFlagStatus(DAC_Channel_TypeDef DAC_Channel, DAC_FLAG_TypeDef DAC_FLAG) { FlagStatus flagstatus = RESET; uint8_t flag = 0; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_DAC_FLAG(DAC_FLAG)); flag = (uint8_t)(DAC_FLAG << DAC_Channel); /* Check the status of the specified DAC flag */ if ((DAC->SR & flag ) != (uint8_t)RESET) { /* DAC FLAG is set */ flagstatus = SET; } else { /* DAC FLAG is reset */ flagstatus = RESET; } /* Return the DAC FLAG status */ return flagstatus; } /** * @brief Clears the DAC channel's pending flags. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param DAC_FLAG: specifies the flag to clear. * This parameter can be of the following value: * @arg DAC_FLAG_DMAUDR: DMA underrun flag * @retval None */ void DAC_ClearFlag(DAC_Channel_TypeDef DAC_Channel, DAC_FLAG_TypeDef DAC_FLAG) { uint8_t flag = 0; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_DAC_FLAG(DAC_FLAG)); /* identify the selected flag*/ flag = (uint8_t)(DAC_FLAG << DAC_Channel); /* Clear the selected DAC flag */ DAC->SR = (uint8_t)(~flag); } /** * @brief Checks whether the specified DAC interrupt has occurred or not. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param DAC_IT: specifies the DAC interrupt source to check. * This parameter can be the following values: * @arg DAC_IT_DMAUDR: DMA underrun interrupt mask * @note The DMA underrun occurs when a second external trigger arrives before * the acknowledgement for the first external trigger is received (first request). * @retval The new state of DAC_IT (SET or RESET). */ ITStatus DAC_GetITStatus(DAC_Channel_TypeDef DAC_Channel, DAC_IT_TypeDef DAC_IT) { ITStatus itstatus = RESET; uint8_t enablestatus = 0; uint8_t flagstatus = 0; uint8_t tempreg = 0; /* Check the parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_DAC_IT(DAC_IT)); /* identify the status of the IT and its correspondent flag*/ tempreg = *(uint8_t*)(uint16_t)(DAC_BASE + CR2_Offset + (uint8_t)((uint8_t)DAC_Channel << 2)); enablestatus = (uint8_t)( tempreg & (uint8_t)((uint8_t)DAC_IT << DAC_Channel)); flagstatus = (uint8_t)(DAC->SR & (uint8_t)(DAC_IT >> ((uint8_t)0x05 - DAC_Channel))); /* Check the status of the specified DAC interrupt */ if (((flagstatus) != (uint8_t)RESET) && enablestatus) { /* DAC IT is set */ itstatus = SET; } else { /* DAC IT is reset */ itstatus = RESET; } /* Return the DAC IT status */ return itstatus; } /** * @brief Clears the DAC channel's interrupt pending bits. * @param DAC_Channel: the selected DAC channel. * This parameter can be one of the following values: * @arg DAC_Channel_1: DAC Channel1 selected * @arg DAC_Channel_2: DAC Channel2 selected * @param DAC_IT: specifies the DAC interrupt pending bit to clear. * This parameter can be the following values: * @arg DAC_IT_DMAUDR: DMA underrun interrupt mask * @retval None */ void DAC_ClearITPendingBit(DAC_Channel_TypeDef DAC_Channel, DAC_IT_TypeDef DAC_IT) { /* Check the parameters */ assert_param(IS_DAC_CHANNEL(DAC_Channel)); assert_param(IS_DAC_IT(DAC_IT)); /* Clear the selected DAC interrupt pending bits */ DAC->SR = (uint8_t)~(uint8_t)((uint8_t)DAC_IT >> (0x05 - DAC_Channel)); } /** * @} */ /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/