/** ****************************************************************************** * @file stm322xg_eval.c * @author MCD Application Team * @brief This file provides a set of firmware functions to manage LEDs, * push-buttons and COM ports available on STM322xG-EVAL evaluation * board(MB786) RevB from STMicroelectronics. ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2017 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* File Info: ------------------------------------------------------------------ User NOTE This driver requires the stm322xg_eval_io.c driver to manage the joystick ------------------------------------------------------------------------------*/ /* Includes ------------------------------------------------------------------*/ #include "stm322xg_eval.h" #include "stm322xg_eval_io.h" /** @defgroup BSP BSP * @{ */ /** @defgroup STM322xG_EVAL STM322xG_EVAL * @{ */ /** @defgroup STM322xG_EVAL_LOW_LEVEL STM322xG EVAL LOW LEVEL * @{ */ /** @defgroup STM322xG_EVAL_LOW_LEVEL_Private_TypesDefinitions STM322xG EVAL LOW LEVEL Private TypesDefinitions * @{ */ typedef struct { __IO uint16_t REG; __IO uint16_t RAM; }LCD_CONTROLLER_TypeDef; /** * @} */ /** @defgroup STM322xG_EVAL_LOW_LEVEL_Private_Defines STM322xG EVAL LOW LEVEL Private Defines * @{ */ /** * @brief STM322xG EVAL BSP Driver version number V7.0.1 */ #define __STM322xG_EVAL_BSP_VERSION_MAIN (0x07) /*!< [31:24] main version */ #define __STM322xG_EVAL_BSP_VERSION_SUB1 (0x00) /*!< [23:16] sub1 version */ #define __STM322xG_EVAL_BSP_VERSION_SUB2 (0x01) /*!< [15:8] sub2 version */ #define __STM322xG_EVAL_BSP_VERSION_RC (0x00) /*!< [7:0] release candidate */ #define __STM322xG_EVAL_BSP_VERSION ((__STM322xG_EVAL_BSP_VERSION_MAIN << 24)\ |(__STM322xG_EVAL_BSP_VERSION_SUB1 << 16)\ |(__STM322xG_EVAL_BSP_VERSION_SUB2 << 8 )\ |(__STM322xG_EVAL_BSP_VERSION_RC)) #define FSMC_BANK3_BASE ((uint32_t)(0x60000000 | 0x08000000)) #define FSMC_BANK3 ((LCD_CONTROLLER_TypeDef *) FSMC_BANK3_BASE) #define I2C_TIMEOUT 100 /*Instance = COM_USART[COM]; HAL_UART_Init(huart); } /** * @brief Init Potentiometer. */ void BSP_POTENTIOMETER_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; ADC_ChannelConfTypeDef ADC_Config; /* ADC an GPIO Periph clock enable */ ADCx_CLK_ENABLE(); ADCx_CHANNEL_GPIO_CLK_ENABLE(); /* ADC Channel GPIO pin configuration */ GPIO_InitStruct.Pin = ADCx_CHANNEL_PIN; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(ADCx_CHANNEL_GPIO_PORT, &GPIO_InitStruct); /* Configure the ADC peripheral */ hEvalADC.Instance = ADCx; HAL_ADC_DeInit(&hEvalADC); hEvalADC.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2; /* Asynchronous clock mode, input ADC clock not divided */ hEvalADC.Init.Resolution = ADC_RESOLUTION_12B; /* 12-bit resolution for converted data */ hEvalADC.Init.DataAlign = ADC_DATAALIGN_RIGHT; /* Right-alignment for converted data */ hEvalADC.Init.ScanConvMode = DISABLE; /* Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1) */ hEvalADC.Init.EOCSelection = DISABLE; /* EOC flag picked-up to indicate conversion end */ hEvalADC.Init.ContinuousConvMode = DISABLE; /* Continuous mode disabled to have only 1 conversion at each conversion trig */ hEvalADC.Init.NbrOfConversion = 1; /* Parameter discarded because sequencer is disabled */ hEvalADC.Init.DiscontinuousConvMode = DISABLE; /* Parameter discarded because sequencer is disabled */ hEvalADC.Init.NbrOfDiscConversion = 0; /* Parameter discarded because sequencer is disabled */ hEvalADC.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1; /* Software start to trig the 1st conversion manually, without external event */ hEvalADC.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; /* Parameter discarded because software trigger chosen */ hEvalADC.Init.DMAContinuousRequests = DISABLE; /* DMA one-shot mode selected */ HAL_ADC_Init(&hEvalADC); /* Configure ADC regular channel */ ADC_Config.Channel = ADCx_CHANNEL; /* Sampled channel number */ ADC_Config.Rank = 1; /* Rank of sampled channel number ADCx_CHANNEL */ ADC_Config.SamplingTime = ADC_SAMPLETIME_3CYCLES; /* Sampling time (number of clock cycles unit) */ ADC_Config.Offset = 0; /* Parameter discarded because offset correction is disabled */ HAL_ADC_ConfigChannel(&hEvalADC, &ADC_Config); } /** * @brief Get Potentiometer level in 12 bits. * @retval Potentiometer level(0..0xFFF) / 0xFFFFFFFF : Error */ uint32_t BSP_POTENTIOMETER_GetLevel(void) { if(HAL_ADC_Start(&hEvalADC) == HAL_OK) { /* Wait for the end of conversion */ if(HAL_ADC_PollForConversion(&hEvalADC, ADCx_POLL_TIMEOUT)== HAL_OK) { /* Check if the continuous conversion of regular channel is finished */ if((HAL_ADC_GetState(&hEvalADC) & HAL_ADC_STATE_EOC_REG) == HAL_ADC_STATE_EOC_REG) { /* return the converted value of regular channel */ return (HAL_ADC_GetValue(&hEvalADC)); } } } return 0xFFFFFFFF; } /** * @brief Configures joystick GPIO and EXTI modes. * @param Joy_Mode: Button mode. * This parameter can be one of the following values: * @arg JOY_MODE_GPIO: Joystick pins will be used as simple IOs * @arg JOY_MODE_EXTI: Joystick pins will be connected to EXTI line * with interrupt generation capability * @retval IO_OK: if all initializations are OK. Other value if error. */ uint8_t BSP_JOY_Init(JOYMode_TypeDef Joy_Mode) { uint8_t ret = 0; /* Initialize the IO functionalities */ ret = BSP_IO_Init(); /* Configure joystick pins in IT mode */ if(Joy_Mode == JOY_MODE_EXTI) { /* Configure joystick pins in IT mode */ BSP_IO_ConfigPin(JOY_ALL_PINS, IO_MODE_IT_FALLING_EDGE); } return ret; } /** * @brief Returns the current joystick status. * @retval Code of the joystick key pressed * This code can be one of the following values: * @arg JOY_NONE * @arg JOY_SEL * @arg JOY_DOWN * @arg JOY_LEFT * @arg JOY_RIGHT * @arg JOY_UP */ JOYState_TypeDef BSP_JOY_GetState(void) { uint8_t tmp = 0; /* Read the status joystick pins */ tmp = (uint8_t)BSP_IO_ReadPin(JOY_ALL_PINS); /* Check the pressed keys */ if((tmp & JOY_NONE_PIN) == JOY_NONE) { return(JOYState_TypeDef) JOY_NONE; } else if(!(tmp & JOY_SEL_PIN)) { return(JOYState_TypeDef) JOY_SEL; } else if(!(tmp & JOY_DOWN_PIN)) { return(JOYState_TypeDef) JOY_DOWN; } else if(!(tmp & JOY_LEFT_PIN)) { return(JOYState_TypeDef) JOY_LEFT; } else if(!(tmp & JOY_RIGHT_PIN)) { return(JOYState_TypeDef) JOY_RIGHT; } else if(!(tmp & JOY_UP_PIN)) { return(JOYState_TypeDef) JOY_UP; } else { return(JOYState_TypeDef) JOY_NONE; } } /******************************************************************************* BUS OPERATIONS *******************************************************************************/ /**************************** I2C Routines ************************************/ /** * @brief Initializes I2C MSP. */ static void I2Cx_MspInit(void) { GPIO_InitTypeDef GPIO_InitStruct; /*** Configure the GPIOs ***/ /* Enable GPIO clock */ EVAL_I2Cx_SCL_SDA_GPIO_CLK_ENABLE(); /* Workaround: Configure I2C SCL/SDA pins as Output Push Pull Mode inorder to force the high state before connecting the I2C alternate function */ GPIO_InitStruct.Pin = EVAL_I2Cx_SCL_PIN; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init(EVAL_I2Cx_SCL_SDA_GPIO_PORT, &GPIO_InitStruct); GPIO_InitStruct.Pin = EVAL_I2Cx_SDA_PIN; HAL_GPIO_Init(EVAL_I2Cx_SCL_SDA_GPIO_PORT, &GPIO_InitStruct); HAL_GPIO_WritePin(EVAL_I2Cx_SCL_SDA_GPIO_PORT, EVAL_I2Cx_SCL_PIN, GPIO_PIN_SET); HAL_GPIO_WritePin(EVAL_I2Cx_SCL_SDA_GPIO_PORT, EVAL_I2Cx_SDA_PIN, GPIO_PIN_SET); /* Configure I2C SCL as alternate function */ GPIO_InitStruct.Pin = EVAL_I2Cx_SCL_PIN; GPIO_InitStruct.Mode = GPIO_MODE_AF_OD; GPIO_InitStruct.Alternate = EVAL_I2Cx_SCL_SDA_AF; HAL_GPIO_Init(EVAL_I2Cx_SCL_SDA_GPIO_PORT, &GPIO_InitStruct); /* Configure I2C SDA as alternate function */ GPIO_InitStruct.Pin = EVAL_I2Cx_SDA_PIN; HAL_GPIO_Init(EVAL_I2Cx_SCL_SDA_GPIO_PORT, &GPIO_InitStruct); /*** Configure the I2C peripheral ***/ /* Enable I2C clock */ EVAL_I2Cx_CLK_ENABLE(); /* Force the I2C peripheral clock reset */ EVAL_I2Cx_FORCE_RESET(); /* Release the I2C peripheral clock reset */ EVAL_I2Cx_RELEASE_RESET(); /* Set priority and enable I2Cx event Interrupt */ HAL_NVIC_SetPriority(EVAL_I2Cx_EV_IRQn, 0x0F, 0); HAL_NVIC_EnableIRQ(EVAL_I2Cx_EV_IRQn); /* Set priority and enable I2Cx error Interrupt */ HAL_NVIC_SetPriority(EVAL_I2Cx_ER_IRQn, 0x0F, 0); HAL_NVIC_EnableIRQ(EVAL_I2Cx_ER_IRQn); } /** * @brief Initializes I2C HAL. */ static void I2Cx_Init(void) { if(HAL_I2C_GetState(&heval_I2c) == HAL_I2C_STATE_RESET) { heval_I2c.Instance = EVAL_I2Cx; heval_I2c.Init.ClockSpeed = BSP_I2C_SPEED; heval_I2c.Init.DutyCycle = I2C_DUTYCYCLE_2; heval_I2c.Init.OwnAddress1 = 0; heval_I2c.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; heval_I2c.Init.DualAddressMode = I2C_DUALADDRESS_DISABLED; heval_I2c.Init.OwnAddress2 = 0; heval_I2c.Init.GeneralCallMode = I2C_GENERALCALL_DISABLED; heval_I2c.Init.NoStretchMode = I2C_NOSTRETCH_DISABLED; /* Init the I2C */ I2Cx_MspInit(); HAL_I2C_Init(&heval_I2c); } } /** * @brief Configures I2C Interrupt. */ static void I2Cx_ITConfig(void) { static uint8_t I2C_IT_Enabled = 0; GPIO_InitTypeDef GPIO_InitStruct; if(I2C_IT_Enabled == 0) { I2C_IT_Enabled = 1; /* Enable the GPIO EXTI clock */ __HAL_RCC_GPIOI_CLK_ENABLE(); __HAL_RCC_SYSCFG_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FAST; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; HAL_GPIO_Init(GPIOI, &GPIO_InitStruct); /* Set priority and Enable GPIO EXTI Interrupt */ HAL_NVIC_SetPriority((IRQn_Type)(EXTI2_IRQn), 0x0F, 0); HAL_NVIC_EnableIRQ((IRQn_Type)(EXTI2_IRQn)); } } /** * @brief Reads a single data. * @param Addr: I2C address * @param Reg: Reg address * @retval Data to be read */ static uint8_t I2Cx_Read(uint8_t Addr, uint8_t Reg) { HAL_StatusTypeDef status = HAL_OK; uint8_t Value = 0; status = HAL_I2C_Mem_Read(&heval_I2c, Addr, Reg, I2C_MEMADD_SIZE_8BIT, &Value, 1, I2C_TIMEOUT); /* Check the communication status */ if(status != HAL_OK) { /* Execute user timeout callback */ I2Cx_Error(Addr); } return Value; } /** * @brief Writes a single data. * @param Addr: I2C address * @param Reg: Reg address * @param Value: Data to be written */ static void I2Cx_Write(uint8_t Addr, uint8_t Reg, uint8_t Value) { HAL_StatusTypeDef status = HAL_OK; status = HAL_I2C_Mem_Write(&heval_I2c, Addr, (uint16_t)Reg, I2C_MEMADD_SIZE_8BIT, &Value, 1, I2C_TIMEOUT); /* Check the communication status */ if(status != HAL_OK) { /* I2C error occured */ I2Cx_Error(Addr); } } /** * @brief Reads multiple data. * @param Addr: I2C address * @param Reg: Reg address * @param MemAddress Internal memory address * @param Buffer: Pointer to data buffer * @param Length: Length of the data * @retval Number of read data */ static HAL_StatusTypeDef I2Cx_ReadMultiple(uint8_t Addr, uint16_t Reg, uint16_t MemAddress, uint8_t *Buffer, uint16_t Length) { HAL_StatusTypeDef status = HAL_OK; status = HAL_I2C_Mem_Read(&heval_I2c, Addr, (uint16_t)Reg, MemAddress, Buffer, Length, I2C_TIMEOUT); /* Check the communication status */ if(status != HAL_OK) { /* I2C error occured */ I2Cx_Error(Addr); } return status; } /** * @brief Write a value in a register of the device through BUS in using DMA mode * @param Addr: Device address on BUS Bus. * @param Reg: The target register address to write * @param MemAddress Internal memory address * @param Buffer: The target register value to be written * @param Length: buffer size to be written * @retval HAL status */ static HAL_StatusTypeDef I2Cx_WriteMultiple(uint8_t Addr, uint16_t Reg, uint16_t MemAddress, uint8_t *Buffer, uint16_t Length) { HAL_StatusTypeDef status = HAL_OK; status = HAL_I2C_Mem_Write(&heval_I2c, Addr, (uint16_t)Reg, MemAddress, Buffer, Length, I2C_TIMEOUT); /* Check the communication status */ if(status != HAL_OK) { /* Re-Initiaize the I2C Bus */ I2Cx_Error(Addr); } return status; } /** * @brief Checks if target device is ready for communication. * @note This function is used with Memory devices * @param DevAddress: Target device address * @param Trials: Number of trials * @retval HAL status */ static HAL_StatusTypeDef I2Cx_IsDeviceReady(uint16_t DevAddress, uint32_t Trials) { return (HAL_I2C_IsDeviceReady(&heval_I2c, DevAddress, Trials, I2C_TIMEOUT)); } /** * @brief Manages error callback by re-initializing I2C. * @param Addr: I2C Address */ static void I2Cx_Error(uint8_t Addr) { /* De-initialize the IOE comunication BUS */ HAL_I2C_DeInit(&heval_I2c); /* Re-Initiaize the IOE comunication BUS */ I2Cx_Init(); } /*************************** FSMC Routines ************************************/ /** * @brief Initializes FSMC_BANK3 MSP. */ static void FSMC_BANK3_MspInit(void) { GPIO_InitTypeDef GPIO_Init_Structure; /* Enable FSMC clock */ __HAL_RCC_FSMC_CLK_ENABLE(); /* Enable GPIOs clock */ __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); /* Common GPIO configuration */ GPIO_Init_Structure.Mode = GPIO_MODE_AF_PP; GPIO_Init_Structure.Pull = GPIO_PULLUP; GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH; GPIO_Init_Structure.Alternate = GPIO_AF12_FSMC; /* GPIOD configuration */ GPIO_Init_Structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_8 |\ GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 |\ GPIO_PIN_14 | GPIO_PIN_15; HAL_GPIO_Init(GPIOD, &GPIO_Init_Structure); /* GPIOE configuration */ GPIO_Init_Structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3| GPIO_PIN_4 | GPIO_PIN_7 |\ GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 |\ GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15; HAL_GPIO_Init(GPIOE, &GPIO_Init_Structure); /* GPIOF configuration */ GPIO_Init_Structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2| GPIO_PIN_3 | GPIO_PIN_4 |\ GPIO_PIN_5 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15; HAL_GPIO_Init(GPIOF, &GPIO_Init_Structure); /* GPIOG configuration */ GPIO_Init_Structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2| GPIO_PIN_3 | GPIO_PIN_4 |\ GPIO_PIN_5 | GPIO_PIN_10; HAL_GPIO_Init(GPIOG, &GPIO_Init_Structure); } /** * @brief Initializes LCD IO. */ static void FSMC_BANK3_Init(void) { SRAM_HandleTypeDef hsram; FSMC_NORSRAM_TimingTypeDef SRAM_Timing; /*** Configure the SRAM Bank 3 ***/ /* Configure IPs */ hsram.Instance = FSMC_NORSRAM_DEVICE; hsram.Extended = FSMC_NORSRAM_EXTENDED_DEVICE; SRAM_Timing.AddressSetupTime = 5; SRAM_Timing.AddressHoldTime = 1; SRAM_Timing.DataSetupTime = 9; SRAM_Timing.BusTurnAroundDuration = 0; SRAM_Timing.CLKDivision = 2; SRAM_Timing.DataLatency = 2; SRAM_Timing.AccessMode = FSMC_ACCESS_MODE_A; hsram.Init.NSBank = FSMC_NORSRAM_BANK3; hsram.Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE; hsram.Init.MemoryType = FSMC_MEMORY_TYPE_SRAM; hsram.Init.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_16; hsram.Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE; hsram.Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW; hsram.Init.WrapMode = FSMC_WRAP_MODE_DISABLE; hsram.Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS; hsram.Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE; hsram.Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE; hsram.Init.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE; hsram.Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE; hsram.Init.WriteBurst = FSMC_WRITE_BURST_DISABLE; /* Initialize the SRAM controller */ FSMC_BANK3_MspInit(); HAL_SRAM_Init(&hsram, &SRAM_Timing, &SRAM_Timing); } /** * @brief Writes register value. * @param Data: Data to be written */ static void FSMC_BANK3_WriteData(uint16_t Data) { /* Write 16-bit Reg */ FSMC_BANK3->RAM = Data; } /** * @brief Writes register address. * @param Reg: Register to be written */ static void FSMC_BANK3_WriteReg(uint8_t Reg) { /* Write 16-bit Index, then write register */ FSMC_BANK3->REG = Reg; } /** * @brief Reads register value. * @retval Read value */ static uint16_t FSMC_BANK3_ReadData(void) { return FSMC_BANK3->RAM; } /******************************************************************************* LINK OPERATIONS *******************************************************************************/ /***************************** LINK IOE ***************************************/ /** * @brief Initializes IOE low level. */ void IOE_Init(void) { I2Cx_Init(); } /** * @brief Configures IOE low level Interrupt. */ void IOE_ITConfig(void) { I2Cx_ITConfig(); } /** * @brief IOE writes single data. * @param Addr: I2C address * @param Reg: Reg address * @param Value: Data to be written */ void IOE_Write(uint8_t Addr, uint8_t Reg, uint8_t Value) { I2Cx_Write(Addr, Reg, Value); } /** * @brief IOE reads single data. * @param Addr: I2C address * @param Reg: Reg address * @retval Read data */ uint8_t IOE_Read(uint8_t Addr, uint8_t Reg) { return I2Cx_Read(Addr, Reg); } /** * @brief IOE reads multiple data. * @param Addr: I2C address * @param Reg: Reg address * @param Buffer: Pointer to data buffer * @param Length: Length of the data * @retval Number of read data */ uint16_t IOE_ReadMultiple(uint8_t Addr, uint8_t Reg, uint8_t *Buffer, uint16_t Length) { return I2Cx_ReadMultiple(Addr, Reg, I2C_MEMADD_SIZE_8BIT, Buffer, Length); } /** * @brief IOE delay. * @param Delay: Delay in ms */ void IOE_Delay(uint32_t Delay) { HAL_Delay(Delay); } /********************************* LINK LCD ***********************************/ /** * @brief Initializes LCD low level. */ void LCD_IO_Init(void) { if(Is_LCD_IO_Initialized == 0) { Is_LCD_IO_Initialized = 1; FSMC_BANK3_Init(); } } /** * @brief Writes data on LCD data register. * @param Data: Data to be written */ void LCD_IO_WriteData(uint16_t Data) { /* Write 16-bit Reg */ FSMC_BANK3_WriteData(Data); } /** * @brief Write register value. * @param pData Pointer on the register value * @param Size Size of byte to transmit to the register */ void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size) { uint32_t counter; uint16_t *ptr = (uint16_t *) pData; for (counter = 0; counter < Size; counter+=2) { /* Write 16-bit Reg */ FSMC_BANK3_WriteData(*ptr); ptr++; } } /** * @brief Writes register on LCD register. * @param Reg: Register to be written */ void LCD_IO_WriteReg(uint8_t Reg) { /* Write 16-bit Index, then Write Reg */ FSMC_BANK3_WriteReg(Reg); } /** * @brief Reads data from LCD data register. * @param Reg: Register to be read * @retval Read data. */ uint16_t LCD_IO_ReadData(uint16_t Reg) { FSMC_BANK3_WriteReg(Reg); /* Read 16-bit Reg */ return FSMC_BANK3_ReadData(); } /********************************* LINK AUDIO *********************************/ /** * @brief Initializes Audio low level. */ void AUDIO_IO_Init(void) { I2Cx_Init(); } /** * @brief DeInitializes Audio low level. * @note This function is intentionally kept empty, user should define it. */ void AUDIO_IO_DeInit(void) { } /** * @brief Writes a single data. * @param Addr: I2C address * @param Reg: Reg address * @param Value: Data to be written */ void AUDIO_IO_Write(uint8_t Addr, uint8_t Reg, uint8_t Value) { I2Cx_Write(Addr, Reg, Value); } /** * @brief Reads a single data. * @param Addr: I2C address * @param Reg: Reg address * @retval Data to be read */ uint8_t AUDIO_IO_Read(uint8_t Addr, uint8_t Reg) { return I2Cx_Read(Addr, Reg); } /***************************** LINK CAMERA ************************************/ /** * @brief Initializes Camera low level. */ void CAMERA_IO_Init(void) { I2Cx_Init(); } /** * @brief Camera writes single data. * @param Addr: I2C address * @param Reg: Reg address * @param Value: Data to be written */ void CAMERA_IO_Write(uint8_t Addr, uint8_t Reg, uint8_t Value) { I2Cx_Write(Addr, Reg, Value); } /** * @brief Camera reads single data. * @param Addr: I2C address * @param Reg: Reg address * @retval Read data */ uint8_t CAMERA_IO_Read(uint8_t Addr, uint8_t Reg) { return I2Cx_Read(Addr, Reg); } /** * @brief Camera delay. * @param Delay: Delay in ms */ void CAMERA_Delay(uint32_t Delay) { HAL_Delay(Delay); } /******************************** LINK I2C EEPROM *****************************/ /** * @brief Initializes peripherals used by the I2C EEPROM driver. */ void EEPROM_IO_Init(void) { I2Cx_Init(); } /** * @brief Write data to I2C EEPROM driver in using DMA channel * @param DevAddress: Target device address * @param MemAddress: Internal memory address * @param pBuffer: Pointer to data buffer * @param BufferSize: Amount of data to be sent * @retval HAL status */ HAL_StatusTypeDef EEPROM_IO_WriteData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize) { return (I2Cx_WriteMultiple(DevAddress, MemAddress, I2C_MEMADD_SIZE_16BIT, pBuffer, BufferSize)); } /** * @brief Reads data from I2C EEPROM driver in using DMA channel. * @param DevAddress: Target device address * @param MemAddress: Internal memory address * @param pBuffer: Pointer to data buffer * @param BufferSize: Amount of data to be read * @retval HAL status */ HAL_StatusTypeDef EEPROM_IO_ReadData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize) { return (I2Cx_ReadMultiple(DevAddress, MemAddress, I2C_MEMADD_SIZE_16BIT, pBuffer, BufferSize)); } /** * @brief Checks if target device is ready for communication. * @note This function is used with Memory devices * @param DevAddress: Target device address * @param Trials: Number of trials * @retval HAL status */ HAL_StatusTypeDef EEPROM_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials) { return (I2Cx_IsDeviceReady(DevAddress, Trials)); } /** * @} */ /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/