/**
******************************************************************************
* @file stm322xg_eval.c
* @author MCD Application Team
* @brief This file provides a set of firmware functions to manage LEDs,
* push-buttons and COM ports available on STM322xG-EVAL evaluation
* board(MB786) RevB from STMicroelectronics.
******************************************************************************
* @attention
*
*
© COPYRIGHT(c) 2017 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* File Info: ------------------------------------------------------------------
User NOTE
This driver requires the stm322xg_eval_io.c driver to manage the joystick
------------------------------------------------------------------------------*/
/* Includes ------------------------------------------------------------------*/
#include "stm322xg_eval.h"
#include "stm322xg_eval_io.h"
/** @defgroup BSP BSP
* @{
*/
/** @defgroup STM322xG_EVAL STM322xG_EVAL
* @{
*/
/** @defgroup STM322xG_EVAL_LOW_LEVEL STM322xG EVAL LOW LEVEL
* @{
*/
/** @defgroup STM322xG_EVAL_LOW_LEVEL_Private_TypesDefinitions STM322xG EVAL LOW LEVEL Private TypesDefinitions
* @{
*/
typedef struct
{
__IO uint16_t REG;
__IO uint16_t RAM;
}LCD_CONTROLLER_TypeDef;
/**
* @}
*/
/** @defgroup STM322xG_EVAL_LOW_LEVEL_Private_Defines STM322xG EVAL LOW LEVEL Private Defines
* @{
*/
/**
* @brief STM322xG EVAL BSP Driver version number V7.0.1
*/
#define __STM322xG_EVAL_BSP_VERSION_MAIN (0x07) /*!< [31:24] main version */
#define __STM322xG_EVAL_BSP_VERSION_SUB1 (0x00) /*!< [23:16] sub1 version */
#define __STM322xG_EVAL_BSP_VERSION_SUB2 (0x01) /*!< [15:8] sub2 version */
#define __STM322xG_EVAL_BSP_VERSION_RC (0x00) /*!< [7:0] release candidate */
#define __STM322xG_EVAL_BSP_VERSION ((__STM322xG_EVAL_BSP_VERSION_MAIN << 24)\
|(__STM322xG_EVAL_BSP_VERSION_SUB1 << 16)\
|(__STM322xG_EVAL_BSP_VERSION_SUB2 << 8 )\
|(__STM322xG_EVAL_BSP_VERSION_RC))
#define FSMC_BANK3_BASE ((uint32_t)(0x60000000 | 0x08000000))
#define FSMC_BANK3 ((LCD_CONTROLLER_TypeDef *) FSMC_BANK3_BASE)
#define I2C_TIMEOUT 100 /*Instance = COM_USART[COM];
HAL_UART_Init(huart);
}
/**
* @brief Init Potentiometer.
*/
void BSP_POTENTIOMETER_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
ADC_ChannelConfTypeDef ADC_Config;
/* ADC an GPIO Periph clock enable */
ADCx_CLK_ENABLE();
ADCx_CHANNEL_GPIO_CLK_ENABLE();
/* ADC Channel GPIO pin configuration */
GPIO_InitStruct.Pin = ADCx_CHANNEL_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(ADCx_CHANNEL_GPIO_PORT, &GPIO_InitStruct);
/* Configure the ADC peripheral */
hEvalADC.Instance = ADCx;
HAL_ADC_DeInit(&hEvalADC);
hEvalADC.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2; /* Asynchronous clock mode, input ADC clock not divided */
hEvalADC.Init.Resolution = ADC_RESOLUTION_12B; /* 12-bit resolution for converted data */
hEvalADC.Init.DataAlign = ADC_DATAALIGN_RIGHT; /* Right-alignment for converted data */
hEvalADC.Init.ScanConvMode = DISABLE; /* Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1) */
hEvalADC.Init.EOCSelection = DISABLE; /* EOC flag picked-up to indicate conversion end */
hEvalADC.Init.ContinuousConvMode = DISABLE; /* Continuous mode disabled to have only 1 conversion at each conversion trig */
hEvalADC.Init.NbrOfConversion = 1; /* Parameter discarded because sequencer is disabled */
hEvalADC.Init.DiscontinuousConvMode = DISABLE; /* Parameter discarded because sequencer is disabled */
hEvalADC.Init.NbrOfDiscConversion = 0; /* Parameter discarded because sequencer is disabled */
hEvalADC.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1; /* Software start to trig the 1st conversion manually, without external event */
hEvalADC.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; /* Parameter discarded because software trigger chosen */
hEvalADC.Init.DMAContinuousRequests = DISABLE; /* DMA one-shot mode selected */
HAL_ADC_Init(&hEvalADC);
/* Configure ADC regular channel */
ADC_Config.Channel = ADCx_CHANNEL; /* Sampled channel number */
ADC_Config.Rank = 1; /* Rank of sampled channel number ADCx_CHANNEL */
ADC_Config.SamplingTime = ADC_SAMPLETIME_3CYCLES; /* Sampling time (number of clock cycles unit) */
ADC_Config.Offset = 0; /* Parameter discarded because offset correction is disabled */
HAL_ADC_ConfigChannel(&hEvalADC, &ADC_Config);
}
/**
* @brief Get Potentiometer level in 12 bits.
* @retval Potentiometer level(0..0xFFF) / 0xFFFFFFFF : Error
*/
uint32_t BSP_POTENTIOMETER_GetLevel(void)
{
if(HAL_ADC_Start(&hEvalADC) == HAL_OK)
{
/* Wait for the end of conversion */
if(HAL_ADC_PollForConversion(&hEvalADC, ADCx_POLL_TIMEOUT)== HAL_OK)
{
/* Check if the continuous conversion of regular channel is finished */
if((HAL_ADC_GetState(&hEvalADC) & HAL_ADC_STATE_EOC_REG) == HAL_ADC_STATE_EOC_REG)
{
/* return the converted value of regular channel */
return (HAL_ADC_GetValue(&hEvalADC));
}
}
}
return 0xFFFFFFFF;
}
/**
* @brief Configures joystick GPIO and EXTI modes.
* @param Joy_Mode: Button mode.
* This parameter can be one of the following values:
* @arg JOY_MODE_GPIO: Joystick pins will be used as simple IOs
* @arg JOY_MODE_EXTI: Joystick pins will be connected to EXTI line
* with interrupt generation capability
* @retval IO_OK: if all initializations are OK. Other value if error.
*/
uint8_t BSP_JOY_Init(JOYMode_TypeDef Joy_Mode)
{
uint8_t ret = 0;
/* Initialize the IO functionalities */
ret = BSP_IO_Init();
/* Configure joystick pins in IT mode */
if(Joy_Mode == JOY_MODE_EXTI)
{
/* Configure joystick pins in IT mode */
BSP_IO_ConfigPin(JOY_ALL_PINS, IO_MODE_IT_FALLING_EDGE);
}
return ret;
}
/**
* @brief Returns the current joystick status.
* @retval Code of the joystick key pressed
* This code can be one of the following values:
* @arg JOY_NONE
* @arg JOY_SEL
* @arg JOY_DOWN
* @arg JOY_LEFT
* @arg JOY_RIGHT
* @arg JOY_UP
*/
JOYState_TypeDef BSP_JOY_GetState(void)
{
uint8_t tmp = 0;
/* Read the status joystick pins */
tmp = (uint8_t)BSP_IO_ReadPin(JOY_ALL_PINS);
/* Check the pressed keys */
if((tmp & JOY_NONE_PIN) == JOY_NONE)
{
return(JOYState_TypeDef) JOY_NONE;
}
else if(!(tmp & JOY_SEL_PIN))
{
return(JOYState_TypeDef) JOY_SEL;
}
else if(!(tmp & JOY_DOWN_PIN))
{
return(JOYState_TypeDef) JOY_DOWN;
}
else if(!(tmp & JOY_LEFT_PIN))
{
return(JOYState_TypeDef) JOY_LEFT;
}
else if(!(tmp & JOY_RIGHT_PIN))
{
return(JOYState_TypeDef) JOY_RIGHT;
}
else if(!(tmp & JOY_UP_PIN))
{
return(JOYState_TypeDef) JOY_UP;
}
else
{
return(JOYState_TypeDef) JOY_NONE;
}
}
/*******************************************************************************
BUS OPERATIONS
*******************************************************************************/
/**************************** I2C Routines ************************************/
/**
* @brief Initializes I2C MSP.
*/
static void I2Cx_MspInit(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/*** Configure the GPIOs ***/
/* Enable GPIO clock */
EVAL_I2Cx_SCL_SDA_GPIO_CLK_ENABLE();
/* Workaround: Configure I2C SCL/SDA pins as Output Push Pull Mode inorder
to force the high state before connecting the I2C alternate function */
GPIO_InitStruct.Pin = EVAL_I2Cx_SCL_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
HAL_GPIO_Init(EVAL_I2Cx_SCL_SDA_GPIO_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = EVAL_I2Cx_SDA_PIN;
HAL_GPIO_Init(EVAL_I2Cx_SCL_SDA_GPIO_PORT, &GPIO_InitStruct);
HAL_GPIO_WritePin(EVAL_I2Cx_SCL_SDA_GPIO_PORT, EVAL_I2Cx_SCL_PIN, GPIO_PIN_SET);
HAL_GPIO_WritePin(EVAL_I2Cx_SCL_SDA_GPIO_PORT, EVAL_I2Cx_SDA_PIN, GPIO_PIN_SET);
/* Configure I2C SCL as alternate function */
GPIO_InitStruct.Pin = EVAL_I2Cx_SCL_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_OD;
GPIO_InitStruct.Alternate = EVAL_I2Cx_SCL_SDA_AF;
HAL_GPIO_Init(EVAL_I2Cx_SCL_SDA_GPIO_PORT, &GPIO_InitStruct);
/* Configure I2C SDA as alternate function */
GPIO_InitStruct.Pin = EVAL_I2Cx_SDA_PIN;
HAL_GPIO_Init(EVAL_I2Cx_SCL_SDA_GPIO_PORT, &GPIO_InitStruct);
/*** Configure the I2C peripheral ***/
/* Enable I2C clock */
EVAL_I2Cx_CLK_ENABLE();
/* Force the I2C peripheral clock reset */
EVAL_I2Cx_FORCE_RESET();
/* Release the I2C peripheral clock reset */
EVAL_I2Cx_RELEASE_RESET();
/* Set priority and enable I2Cx event Interrupt */
HAL_NVIC_SetPriority(EVAL_I2Cx_EV_IRQn, 0x0F, 0);
HAL_NVIC_EnableIRQ(EVAL_I2Cx_EV_IRQn);
/* Set priority and enable I2Cx error Interrupt */
HAL_NVIC_SetPriority(EVAL_I2Cx_ER_IRQn, 0x0F, 0);
HAL_NVIC_EnableIRQ(EVAL_I2Cx_ER_IRQn);
}
/**
* @brief Initializes I2C HAL.
*/
static void I2Cx_Init(void)
{
if(HAL_I2C_GetState(&heval_I2c) == HAL_I2C_STATE_RESET)
{
heval_I2c.Instance = EVAL_I2Cx;
heval_I2c.Init.ClockSpeed = BSP_I2C_SPEED;
heval_I2c.Init.DutyCycle = I2C_DUTYCYCLE_2;
heval_I2c.Init.OwnAddress1 = 0;
heval_I2c.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
heval_I2c.Init.DualAddressMode = I2C_DUALADDRESS_DISABLED;
heval_I2c.Init.OwnAddress2 = 0;
heval_I2c.Init.GeneralCallMode = I2C_GENERALCALL_DISABLED;
heval_I2c.Init.NoStretchMode = I2C_NOSTRETCH_DISABLED;
/* Init the I2C */
I2Cx_MspInit();
HAL_I2C_Init(&heval_I2c);
}
}
/**
* @brief Configures I2C Interrupt.
*/
static void I2Cx_ITConfig(void)
{
static uint8_t I2C_IT_Enabled = 0;
GPIO_InitTypeDef GPIO_InitStruct;
if(I2C_IT_Enabled == 0)
{
I2C_IT_Enabled = 1;
/* Enable the GPIO EXTI clock */
__HAL_RCC_GPIOI_CLK_ENABLE();
__HAL_RCC_SYSCFG_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);
/* Set priority and Enable GPIO EXTI Interrupt */
HAL_NVIC_SetPriority((IRQn_Type)(EXTI2_IRQn), 0x0F, 0);
HAL_NVIC_EnableIRQ((IRQn_Type)(EXTI2_IRQn));
}
}
/**
* @brief Reads a single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @retval Data to be read
*/
static uint8_t I2Cx_Read(uint8_t Addr, uint8_t Reg)
{
HAL_StatusTypeDef status = HAL_OK;
uint8_t Value = 0;
status = HAL_I2C_Mem_Read(&heval_I2c, Addr, Reg, I2C_MEMADD_SIZE_8BIT, &Value, 1, I2C_TIMEOUT);
/* Check the communication status */
if(status != HAL_OK)
{
/* Execute user timeout callback */
I2Cx_Error(Addr);
}
return Value;
}
/**
* @brief Writes a single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @param Value: Data to be written
*/
static void I2Cx_Write(uint8_t Addr, uint8_t Reg, uint8_t Value)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Write(&heval_I2c, Addr, (uint16_t)Reg, I2C_MEMADD_SIZE_8BIT, &Value, 1, I2C_TIMEOUT);
/* Check the communication status */
if(status != HAL_OK)
{
/* I2C error occured */
I2Cx_Error(Addr);
}
}
/**
* @brief Reads multiple data.
* @param Addr: I2C address
* @param Reg: Reg address
* @param MemAddress Internal memory address
* @param Buffer: Pointer to data buffer
* @param Length: Length of the data
* @retval Number of read data
*/
static HAL_StatusTypeDef I2Cx_ReadMultiple(uint8_t Addr, uint16_t Reg, uint16_t MemAddress, uint8_t *Buffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Read(&heval_I2c, Addr, (uint16_t)Reg, MemAddress, Buffer, Length, I2C_TIMEOUT);
/* Check the communication status */
if(status != HAL_OK)
{
/* I2C error occured */
I2Cx_Error(Addr);
}
return status;
}
/**
* @brief Write a value in a register of the device through BUS in using DMA mode
* @param Addr: Device address on BUS Bus.
* @param Reg: The target register address to write
* @param MemAddress Internal memory address
* @param Buffer: The target register value to be written
* @param Length: buffer size to be written
* @retval HAL status
*/
static HAL_StatusTypeDef I2Cx_WriteMultiple(uint8_t Addr, uint16_t Reg, uint16_t MemAddress, uint8_t *Buffer, uint16_t Length)
{
HAL_StatusTypeDef status = HAL_OK;
status = HAL_I2C_Mem_Write(&heval_I2c, Addr, (uint16_t)Reg, MemAddress, Buffer, Length, I2C_TIMEOUT);
/* Check the communication status */
if(status != HAL_OK)
{
/* Re-Initiaize the I2C Bus */
I2Cx_Error(Addr);
}
return status;
}
/**
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param DevAddress: Target device address
* @param Trials: Number of trials
* @retval HAL status
*/
static HAL_StatusTypeDef I2Cx_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (HAL_I2C_IsDeviceReady(&heval_I2c, DevAddress, Trials, I2C_TIMEOUT));
}
/**
* @brief Manages error callback by re-initializing I2C.
* @param Addr: I2C Address
*/
static void I2Cx_Error(uint8_t Addr)
{
/* De-initialize the IOE comunication BUS */
HAL_I2C_DeInit(&heval_I2c);
/* Re-Initiaize the IOE comunication BUS */
I2Cx_Init();
}
/*************************** FSMC Routines ************************************/
/**
* @brief Initializes FSMC_BANK3 MSP.
*/
static void FSMC_BANK3_MspInit(void)
{
GPIO_InitTypeDef GPIO_Init_Structure;
/* Enable FSMC clock */
__HAL_RCC_FSMC_CLK_ENABLE();
/* Enable GPIOs clock */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
/* Common GPIO configuration */
GPIO_Init_Structure.Mode = GPIO_MODE_AF_PP;
GPIO_Init_Structure.Pull = GPIO_PULLUP;
GPIO_Init_Structure.Speed = GPIO_SPEED_HIGH;
GPIO_Init_Structure.Alternate = GPIO_AF12_FSMC;
/* GPIOD configuration */
GPIO_Init_Structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_8 |\
GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 |\
GPIO_PIN_14 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOD, &GPIO_Init_Structure);
/* GPIOE configuration */
GPIO_Init_Structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3| GPIO_PIN_4 | GPIO_PIN_7 |\
GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 |\
GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOE, &GPIO_Init_Structure);
/* GPIOF configuration */
GPIO_Init_Structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2| GPIO_PIN_3 | GPIO_PIN_4 |\
GPIO_PIN_5 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOF, &GPIO_Init_Structure);
/* GPIOG configuration */
GPIO_Init_Structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2| GPIO_PIN_3 | GPIO_PIN_4 |\
GPIO_PIN_5 | GPIO_PIN_10;
HAL_GPIO_Init(GPIOG, &GPIO_Init_Structure);
}
/**
* @brief Initializes LCD IO.
*/
static void FSMC_BANK3_Init(void)
{
SRAM_HandleTypeDef hsram;
FSMC_NORSRAM_TimingTypeDef SRAM_Timing;
/*** Configure the SRAM Bank 3 ***/
/* Configure IPs */
hsram.Instance = FSMC_NORSRAM_DEVICE;
hsram.Extended = FSMC_NORSRAM_EXTENDED_DEVICE;
SRAM_Timing.AddressSetupTime = 5;
SRAM_Timing.AddressHoldTime = 1;
SRAM_Timing.DataSetupTime = 9;
SRAM_Timing.BusTurnAroundDuration = 0;
SRAM_Timing.CLKDivision = 2;
SRAM_Timing.DataLatency = 2;
SRAM_Timing.AccessMode = FSMC_ACCESS_MODE_A;
hsram.Init.NSBank = FSMC_NORSRAM_BANK3;
hsram.Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE;
hsram.Init.MemoryType = FSMC_MEMORY_TYPE_SRAM;
hsram.Init.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_16;
hsram.Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE;
hsram.Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW;
hsram.Init.WrapMode = FSMC_WRAP_MODE_DISABLE;
hsram.Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS;
hsram.Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE;
hsram.Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE;
hsram.Init.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE;
hsram.Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE;
hsram.Init.WriteBurst = FSMC_WRITE_BURST_DISABLE;
/* Initialize the SRAM controller */
FSMC_BANK3_MspInit();
HAL_SRAM_Init(&hsram, &SRAM_Timing, &SRAM_Timing);
}
/**
* @brief Writes register value.
* @param Data: Data to be written
*/
static void FSMC_BANK3_WriteData(uint16_t Data)
{
/* Write 16-bit Reg */
FSMC_BANK3->RAM = Data;
}
/**
* @brief Writes register address.
* @param Reg: Register to be written
*/
static void FSMC_BANK3_WriteReg(uint8_t Reg)
{
/* Write 16-bit Index, then write register */
FSMC_BANK3->REG = Reg;
}
/**
* @brief Reads register value.
* @retval Read value
*/
static uint16_t FSMC_BANK3_ReadData(void)
{
return FSMC_BANK3->RAM;
}
/*******************************************************************************
LINK OPERATIONS
*******************************************************************************/
/***************************** LINK IOE ***************************************/
/**
* @brief Initializes IOE low level.
*/
void IOE_Init(void)
{
I2Cx_Init();
}
/**
* @brief Configures IOE low level Interrupt.
*/
void IOE_ITConfig(void)
{
I2Cx_ITConfig();
}
/**
* @brief IOE writes single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @param Value: Data to be written
*/
void IOE_Write(uint8_t Addr, uint8_t Reg, uint8_t Value)
{
I2Cx_Write(Addr, Reg, Value);
}
/**
* @brief IOE reads single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @retval Read data
*/
uint8_t IOE_Read(uint8_t Addr, uint8_t Reg)
{
return I2Cx_Read(Addr, Reg);
}
/**
* @brief IOE reads multiple data.
* @param Addr: I2C address
* @param Reg: Reg address
* @param Buffer: Pointer to data buffer
* @param Length: Length of the data
* @retval Number of read data
*/
uint16_t IOE_ReadMultiple(uint8_t Addr, uint8_t Reg, uint8_t *Buffer, uint16_t Length)
{
return I2Cx_ReadMultiple(Addr, Reg, I2C_MEMADD_SIZE_8BIT, Buffer, Length);
}
/**
* @brief IOE delay.
* @param Delay: Delay in ms
*/
void IOE_Delay(uint32_t Delay)
{
HAL_Delay(Delay);
}
/********************************* LINK LCD ***********************************/
/**
* @brief Initializes LCD low level.
*/
void LCD_IO_Init(void)
{
if(Is_LCD_IO_Initialized == 0)
{
Is_LCD_IO_Initialized = 1;
FSMC_BANK3_Init();
}
}
/**
* @brief Writes data on LCD data register.
* @param Data: Data to be written
*/
void LCD_IO_WriteData(uint16_t Data)
{
/* Write 16-bit Reg */
FSMC_BANK3_WriteData(Data);
}
/**
* @brief Write register value.
* @param pData Pointer on the register value
* @param Size Size of byte to transmit to the register
*/
void LCD_IO_WriteMultipleData(uint8_t *pData, uint32_t Size)
{
uint32_t counter;
uint16_t *ptr = (uint16_t *) pData;
for (counter = 0; counter < Size; counter+=2)
{
/* Write 16-bit Reg */
FSMC_BANK3_WriteData(*ptr);
ptr++;
}
}
/**
* @brief Writes register on LCD register.
* @param Reg: Register to be written
*/
void LCD_IO_WriteReg(uint8_t Reg)
{
/* Write 16-bit Index, then Write Reg */
FSMC_BANK3_WriteReg(Reg);
}
/**
* @brief Reads data from LCD data register.
* @param Reg: Register to be read
* @retval Read data.
*/
uint16_t LCD_IO_ReadData(uint16_t Reg)
{
FSMC_BANK3_WriteReg(Reg);
/* Read 16-bit Reg */
return FSMC_BANK3_ReadData();
}
/********************************* LINK AUDIO *********************************/
/**
* @brief Initializes Audio low level.
*/
void AUDIO_IO_Init(void)
{
I2Cx_Init();
}
/**
* @brief DeInitializes Audio low level.
* @note This function is intentionally kept empty, user should define it.
*/
void AUDIO_IO_DeInit(void)
{
}
/**
* @brief Writes a single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @param Value: Data to be written
*/
void AUDIO_IO_Write(uint8_t Addr, uint8_t Reg, uint8_t Value)
{
I2Cx_Write(Addr, Reg, Value);
}
/**
* @brief Reads a single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @retval Data to be read
*/
uint8_t AUDIO_IO_Read(uint8_t Addr, uint8_t Reg)
{
return I2Cx_Read(Addr, Reg);
}
/***************************** LINK CAMERA ************************************/
/**
* @brief Initializes Camera low level.
*/
void CAMERA_IO_Init(void)
{
I2Cx_Init();
}
/**
* @brief Camera writes single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @param Value: Data to be written
*/
void CAMERA_IO_Write(uint8_t Addr, uint8_t Reg, uint8_t Value)
{
I2Cx_Write(Addr, Reg, Value);
}
/**
* @brief Camera reads single data.
* @param Addr: I2C address
* @param Reg: Reg address
* @retval Read data
*/
uint8_t CAMERA_IO_Read(uint8_t Addr, uint8_t Reg)
{
return I2Cx_Read(Addr, Reg);
}
/**
* @brief Camera delay.
* @param Delay: Delay in ms
*/
void CAMERA_Delay(uint32_t Delay)
{
HAL_Delay(Delay);
}
/******************************** LINK I2C EEPROM *****************************/
/**
* @brief Initializes peripherals used by the I2C EEPROM driver.
*/
void EEPROM_IO_Init(void)
{
I2Cx_Init();
}
/**
* @brief Write data to I2C EEPROM driver in using DMA channel
* @param DevAddress: Target device address
* @param MemAddress: Internal memory address
* @param pBuffer: Pointer to data buffer
* @param BufferSize: Amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_IO_WriteData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize)
{
return (I2Cx_WriteMultiple(DevAddress, MemAddress, I2C_MEMADD_SIZE_16BIT, pBuffer, BufferSize));
}
/**
* @brief Reads data from I2C EEPROM driver in using DMA channel.
* @param DevAddress: Target device address
* @param MemAddress: Internal memory address
* @param pBuffer: Pointer to data buffer
* @param BufferSize: Amount of data to be read
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_IO_ReadData(uint16_t DevAddress, uint16_t MemAddress, uint8_t* pBuffer, uint32_t BufferSize)
{
return (I2Cx_ReadMultiple(DevAddress, MemAddress, I2C_MEMADD_SIZE_16BIT, pBuffer, BufferSize));
}
/**
* @brief Checks if target device is ready for communication.
* @note This function is used with Memory devices
* @param DevAddress: Target device address
* @param Trials: Number of trials
* @retval HAL status
*/
HAL_StatusTypeDef EEPROM_IO_IsDeviceReady(uint16_t DevAddress, uint32_t Trials)
{
return (I2Cx_IsDeviceReady(DevAddress, Trials));
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/